5 research outputs found

    Influence of consecutive-day blood sampling on polymerase chain reaction-adjusted parasitological cure rates in an antimalarial-drug trial conducted in Tanzania

    Get PDF
    We assessed the influence that consecutive-day blood sampling, compared with single-day blood sampling, had on polymerase chain reaction (PCR)-adjusted parasitological cure after stepwise genotyping of merozoite surface proteins 2 (msp2) and 1 (msp1) in 106 children in Tanzania who had uncomplicated falciparum malaria treated with either sulfadoxine-pyrimethamine or artemether- lumefantrine; 78 of these children developed recurrent parasitemia during the 42-day follow-up period. Initial msp2 genotyping identified 27 and 33 recrudescences by use of single- and consecutive-day sampling, respectively; in subsequent msp1 genotyping, 17 and 21 of these episodes, respectively, were still classified as recrudescences; these results indicate a similar sensitivity of the standard single-day PCR protocol - that is, 82% (27/33) and 81% (17/21), in both genotyping steps. Interpretation of PCR-adjusted results will significantly depend on methodology. © 2007 by the Infectious Diseases Society of America. All rights reserved

    Plasmodium falciparum population dynamics during the early phase of anti-malarial drug treatment in Tanzanian children with acute uncomplicated malaria

    Get PDF
    BACKGROUND\ud \ud This study aimed to explore Plasmodium falciparum population dynamics during the early phase of anti-malarial drug treatment with artemisinin-based combination therapy in children with clinical malaria in a high transmission area in Africa.\ud \ud METHODS\ud \ud A total of 50 children aged 1-10 years with acute uncomplicated P. falciparum malaria in Bagamoyo District, Tanzania, were enrolled. Participants were hospitalized and received supervised standard treatment with artemether-lumefantrine according to body weight in six doses over 3 days. Blood samples were collected 11 times, i.e. at time of diagnosis (-2 h) and 0, 2, 4, 8, 16, 24, 36, 48, 60 and 72 h after initiation of treatment. Parasite population dynamics were assessed using nested polymerase chain reaction (PCR)-genotyping of merozoite surface protein (msp) 1 and 2.\ud \ud RESULTS\ud \ud PCR-analyses from nine sequential blood samples collected after initiation of treatment identified 20 and 21 additional genotypes in 15/50 (30%) and 14/50 (28%) children with msp1 and msp2, respectively, non-detectable in the pre-treatment samples (-2 and 0 h combined). Some 15/20 (75%) and 14/21 (67%) of these genotypes were identified within 24 h, whereas 17/20 (85%) and 19/21 (90%) within 48 h for msp1 and msp2, respectively. The genotype profile was diverse, and varied considerably over time both within and between patients, molecular markers and their respective families.\ud \ud CONCLUSION\ud \ud PCR analyses from multiple blood samples collected during the early treatment phase revealed a complex picture of parasite sub-populations. This underlines the importance of interpreting PCR-outcomes with caution and suggests that the present use of PCR-adjustment from paired blood samples in anti-malarial drug trials may overestimate assessment of drug efficacy in high transmission areas in Africa.The study is registered at http://www.clinicaltrials.gov with identifier NCT00336375

    Global sequence variation in the histidine-rich proteins 2 and 3 of Plasmodium falciparum: implications for the performance of malaria rapid diagnostic tests

    Get PDF
    Background. Accurate diagnosis is essential for prompt and appropriate treatment of malaria. While rapid diagnostic tests (RDTs) offer great potential to improve malaria diagnosis, the sensitivity of RDTs has been reported to be highly variable. One possible factor contributing to variable test performance is the diversity of parasite antigens. This is of particular concern for Plasmodium falciparum histidine-rich protein 2 (PfHRP2)-detecting RDTs since PfHRP2 has been reported to be highly variable in isolates of the Asia-Pacific region. Methods. The pfhrp2 exon 2 fragment from 458 isolates of P. falciparum collected from 38 countries was amplified and sequenced. For a subset of 80 isolates, the exon 2 fragment of histidine-rich protein 3 (pfhrp3) was also amplified and sequenced. DNA sequence and statistical analysis of the variation observed in these genes was conducted. The potential impact of the pfhrp2 variation on RDT detection rates was examined by analysing the relationship between sequence characteristics of this gene and the results of the WHO product testing of malaria RDTs: Round 1 (2008), for 34 PfHRP2-detecting RDTs. Results. Sequence analysis revealed extensive variations in the number and arrangement of various repeats encoded by the genes in parasite populations world-wide. However, no statistically robust correlation between gene structure and RDT detection rate for P. falciparum parasites at 200 parasites per microlitre was identified. Conclusions. The results suggest that despite extreme sequence variation, diversity of PfHRP2 does not appear to be a major cause of RDT sensitivity variation

    Safety and immunogenicity of RTS,S/AS02D malaria vaccine in infants.

    Get PDF
    BACKGROUND: The RTS,S/AS malaria vaccine is being developed for delivery through the World Health Organization's Expanded Program on Immunization (EPI). We assessed the feasibility of integrating RTS,S/AS02D into a standard EPI schedule for infants. METHODS: In this phase 2B, single-center, double-blind, controlled trial involving 340 infants in Bagamoyo, Tanzania, we randomly assigned 340 infants to receive three doses of either the RTS,S/AS02D vaccine or the hepatitis B vaccine at 8, 12, and 16 weeks of age. All infants also received a vaccine containing diphtheria and tetanus toxoids, whole-cell pertussis vaccine, and conjugated Haemophilus influenzae type b vaccine (DTPw/Hib). The primary objectives were the occurrence of serious adverse events during a 9-month surveillance period and a demonstration of noninferiority of the responses to the EPI vaccines (DTPw/Hib and hepatitis B surface antigen) with coadministration of the RTS,S/AS02D vaccine, as compared with the hepatitis B vaccine. The detection of antibodies against Plasmodium falciparum circumsporozoite and efficacy against malaria infection were secondary objectives. RESULTS: At least one serious adverse event was reported in 31 of 170 infants who received the RTS,S/AS02D vaccine (18.2%; 95% confidence interval [CI], 12.7 to 24.9) and in 42 of 170 infants who received the hepatitis B vaccine (24.7%; 95% CI, 18.4 to 31.9). The results showed the noninferiority of the RTS,S/AS02D vaccine in terms of antibody responses to EPI antigens. One month after vaccination, 98.6% of infants receiving the RTS,S/AS02D vaccine had seropositive titers for anticircumsporozoite antibodies on enzyme-linked immunosorbent assay (ELISA). During the 6-month period after the third dose of vaccine, the efficacy of the RTS,S/AS02D vaccine against first infection with P. falciparum malaria was 65.2% (95% CI, 20.7 to 84.7; P=0.01). CONCLUSIONS: The use of the RTS,S/AS02D vaccine in infants had a promising safety profile, did not interfere with the immunologic responses to coadministered EPI antigens, and reduced the incidence of malaria infection. (ClinicalTrials.gov number, NCT00289185.
    corecore