98 research outputs found

    Control of the attosecond synchronization of XUV radiation with phase-optimized mirrors

    Get PDF
    International audienceWe report on the advanced amplitude and phase control of attosecond radiation allowed by specifically-designed multilayer XUV mirrors. We first demonstrate that such mirrors can compensate for the intrinsic chirp of the attosecond emission over a large bandwidth of more than 20 eV. We then show that their combination with metallic foils introduces a third-order dispersion that is adjustable through the mirror's incidence angle. This results in a controllable beating allowing the radiation to be shaped from a single to a series of sub-100 as pulses

    Cr/Sc multilayer radiator for parametric EUV radiation in "water-window" spectral range

    Get PDF
    The results of experimental investigation of parametric radiation generated by 5.7 MeV electrons in a multilayer structure consisting of 100 Cr/Sc bi-layers deposited on a Si[3]N[4] membrane are presented. The multilayer structure was specially created for generation of parametric radiation with photon energy in "water-window" spectral range. First test measurements of angular distributions of radiation have been done and discussed

    Introduction of Zr in nanometric periodic Mg/Co multilayers

    Full text link
    We study the introduction of a third material, namely Zr, within a nanometric periodic Mg/Co structure designed to work as optical component in the extreme UV (EUV) spectral range. Mg/Co, Mg/Zr/Co, Mg/Co/Zr and Mg/Zr/Co/Zr multilayers are designed, then characterized in terms of structural quality and optical performances through X-ray and EUV reflectometry measurements respectively. For the Mg/Co/Zr structure, the reflectance value is equal to 50% at 25.1 nm and 45deg of grazing incidence and reaches 51.3% upon annealing at 200deg C. Measured EUV reflectivity values of tri-layered systems are discussed in terms of material order within a period and compared to the predictions of the theoretical model of Larruquert. Possible applications are pointed out.Comment: 19 page

    Beyond the disk: EUV coronagraphic observations of the Extreme Ultraviolet Imager on board Solar Orbiter

    Full text link
    Most observations of the solar corona beyond 2 Rs consist of broadband visible light imagery from coronagraphs. The associated diagnostics mainly consist of kinematics and derivations of the electron number density. While the measurement of the properties of emission lines can provide crucial additional diagnostics of the coronal plasma (temperatures, velocities, abundances, etc.), these observations are comparatively rare. In visible wavelengths, observations at these heights are limited to total eclipses. In the VUV range, very few additional observations have been achieved since the pioneering results of UVCS. One of the objectives of the Full Sun Imager (FSI) channel of the EUI telescope on board the Solar Orbiter mission has been to provide very wide field-of-view EUV diagnostics of the morphology and dynamics of the solar atmosphere in temperature regimes that are typical of the lower transition region and of the corona. FSI carries out observations in two narrowbands of the EUV spectrum centered on 17.4 nm and 30.4 nm that are dominated, respectively, by lines of Fe IX/X (formed in the corona around 1 MK) and by the resonance line of He II (formed around 80 kK in the lower transition region). Unlike previous EUV imagers, FSI includes a moveable occulting disk that can be inserted in the optical path to reduce the amount of instrumental stray light to a minimum. FSI detects signals at 17.4 nm up to the edge of its FOV (7~Rs), which is about twice further than was previously possible. Comparisons with observations by the LASCO and Metis coronagraphs confirm the presence of morphological similarities and differences between the broadband visible light and EUV emissions, as documented on the basis of prior eclipse and space-based observations. The very-wide-field observations of FSI are paving the way for future dedicated instruments

    Beyond the disk: EUV coronagraphic observations of the Extreme Ultraviolet Imager on board Solar Orbiter

    Get PDF
    Context. Most observations of the solar corona beyond 2 R consist of broadband visible light imagery carried out with coronagraphs. The associated diagnostics mainly consist of kinematics and derivations of the electron number density. While the measurement of the properties of emission lines can provide crucial additional diagnostics of the coronal plasma (temperatures, velocities, abundances, etc.), these types of observations are comparatively rare. In visible wavelengths, observations at these heights are limited to total eclipses. In the ultraviolet (UV) to extreme UV (EUV) range, very few additional observations have been achieved since the pioneering results of the Ultraviolet Coronagraph Spectrometer (UVCS). Aims. One of the objectives of the Full Sun Imager (FSI) channel of the Extreme Ultraviolet Imager (EUI) on board the Solar Orbiter mission has been to provide very wide field-of-view EUV diagnostics of the morphology and dynamics of the solar atmosphere in temperature regimes that are typical of the lower transition region and of the corona. Methods. FSI carries out observations in two narrowbands of the EUV spectrum centered on 17.4 nm and 30.4 nm that are dominated, respectively, by lines of FeIX/X (formed in the corona around 1 MK) and by the resonance line of HeII (formed around 80 kK in the lower transition region). Unlike previous EUV imagers, FSI includes a moveable occulting disk that can be inserted in the optical path to reduce the amount of instrumental stray light to a minimum. Results. FSI detects signals at 17.4 nm up to the edge of its field of view (7 R), which is about twice further than was previously possible. Operation at 30.4 nm are for the moment compromised by an as-yet unidentified source of stray light. Comparisons with observations by the LASCO and Metis coronagraphs confirm the presence of morphological similarities and differences between the broadband visible light and EUV emissions, as documented on the basis of prior eclipse and space-based observations. Conclusions. The very-wide-field observations of FSI out to about 3 and 7 R, without and with the occulting disk, respectively, are paving the way for future dedicated instruments

    Aperiodic multilayer mirrors for efficient broadband reflection in the extreme ultraviolet

    No full text
    International audienceRecent extreme ultraviolet sources using high-harmonic generation in a rare gas make new optics developments necessary. We report on the study and development of multilayer structures with efficient reflectivity in the 35–75 eV energy range. We have optimized, deposited and characterized two aperiodic broadband mirrors consisting of a Mo, Si and B4C thin-film stack. We used the needle procedure in order to optimize mirror reflectivity. The magnetron sputter deposited multilayers have been calibrated and characterized using Cu K α grazing incidence X-ray reflectometry. Reflectivity measured at near-normal incidence on a synchrotron radiation source reaches 12% with a full width at half maximum of nearly 40 eV. Experimental results are compared with theoretical simulation using available optical constants for Mo, Si and B4C in this spectral range

    Développement et caractérisation de revêtements multicouches apériodiques W/SiC pour les rayons X

    No full text
    National audienceDans le domaine des rayons X, les phénomènes de résonance atomique et l’absorption significative des photons dans tous les matériaux impose de travailler en réflexion seulement. Un miroir dit de Bragg (qui consiste en un empilement multicouche de différents matériaux) permet d’obtenir, à une énergie donnée, une très bonne réflexion (obtenue à l’aide des multiples interférences constructives à l’intérieur de l’empilement). Changer l’épaisseur de la période de la multicouche permet de changer l’énergie réfléchie. En ayant une épaisseur différente à chaque période, la longueur d’onde réfléchie n’est jamais la même, cela nous permet de réaliser des multicouches ayant une plus grande bande passante en réflexion – au détriment de la réflectivité, on parle de multicouche apériodique -. De tels systèmes optiques sont nécessaires pour diverses applications, à savoir les diagnostiques plasmas, les imageurs spatiaux, les lignes synchrotrons, la lithographie, ou encore les diagnostics médicaux.Ici, nous présentons une étude du couple W/SiC, à différentes énergies, dans la gamme X-durs. Ce couple de matériau est connu pour avoir une faible rugosité d’interface, et une faible interdiffusion[1,2]. Le fort contraste entre les deux éléments nous permet d’avoir un très bon compromis entre la réflectivité, la bande passante, et le nombre de bicouches à utiliser. Différentes multicouches ont été fabriquées dans notre laboratoire, pour des énergies allant de 8 à 20 keV (les périodes variant de 10 nm à 3 nm). Ces multicouches obtenues ont été mesurées sur notre réflectomètre (raie d’émission Cu k-alpha à 8.048 keV). Les multicouches obtenues sont conformes à la théorie (modélisation sans interfaces)

    X-ray broadband Ni/SiC multilayers: improvement with W barrier layers

    Get PDF
    International audienceWe present an experimental study and performance improvement of periodic and aperiodic Ni/SiC multilayer coatings. Periodic Ni/SiC multilayer mirrors have been coated and characterized by grazing incidence X-ray reflectometry at 8.048 keV (Cu Kα radiation) and by measurements at 3 keV and 5 keV on synchrotron radiation facilities. An interdiffusion effect is found between Ni and SiC layers. A two-material model, NixSiy/SiC, using a silicide instead of Ni, was used to fit the measurements. The addition of 0.6 nm W barrier layers at the interfaces allows a significant reduction of the interdiffusion between Ni and SiC. In order to obtain a specific reflectivity profile in the 2 – 8 keV energy range, we have designed and coated aperiodic multilayer mirrors by using Ni/SiC with and without W barrier layers. The experimental reflectivity profiles as a function of the photon energy were measured on a synchrotron radiation facility in both cases. Adding W barrier layers in Ni/SiC multilayers provides a better precision on the layer thicknesses and a very good agreement between the experimental data and the targeted spectral profile
    corecore