801 research outputs found

    Dynamics of spin 1/2 quantum plasmas

    Get PDF
    The fully nonlinear governing equations for spin 1/2 quantum plasmas are presented. Starting from the Pauli equation, the relevant plasma equations are derived, and it is shown that nontrivial quantum spin couplings arise, enabling studies of the combined collective and spin dynamics. The linear response of the quantum plasma in an electron--ion system is obtained and analyzed. Applications of the theory to solid state and astrophysical systems as well as dusty plasmas are pointed out.Comment: 4 pages, 2 figures, to appear in Physical Review Letter

    Electrodynamics of Magnetars III: Pair Creation Processes in an Ultrastrong Magnetic Field and Particle Heating in a Dynamic Magnetosphere

    Full text link
    We consider the details of the QED processes that create electron-positron pairs in magnetic fields approaching and exceeding 10^{14} G. The formation of free and bound pairs is addressed, and the importance of positronium dissociation by thermal X-rays is noted. We calculate the collision cross section between an X-ray and a gamma ray, and point out a resonance in the cross section when the gamma ray is close to the threshold for pair conversion. We also discuss how the pair creation rate in the open-field circuit and the outer magnetosphere can be strongly enhanced by instabilities near the light cylinder. When the current has a strong fluctuating component, a cascade develops. We examine the details of particle heating, and show that a high rate of pair creation can be sustained close to the star, but only if the spin period is shorter than several seconds. The dissipation rate in this turbulent state can easily accommodate the observed radio output of the transient radio-emitting magnetars, and even their infrared emission. Finally, we outline how a very high rate of pair creation on the open magnetic field lines can help to stabilize a static twist in the closed magnetosphere and to regulate the loss of magnetic helicity by reconnection at the light cylinder.Comment: 25 pages, submitted to the Astrophysical Journa

    Magnetic Photon Splitting: Computations of Proper-time Rates and Spectra

    Get PDF
    The splitting of photons in the presence of an intense magnetic field has recently found astrophysical applications in polar cap models of gamma-ray pulsars and in magnetar scenarios for soft gamma repeaters. Numerical computation of the polarization-dependent rates of this third order QED process for arbitrary field strengths and energies below pair creation threshold is difficult: thus early analyses focused on analytic developments and simpler asymptotic forms. The recent astrophysical interest spurred the use of the S-matrix approach by Mentzel, Berg and Wunner to determine splitting rates. In this paper, we present numerical computations of a full proper-time expression for the rate of splitting that was obtained by Stoneham, and is exact up to the pair creation threshold. While the numerical results derived here are in accord with the earlier asymptotic forms due to Adler, our computed rates still differ by as much as factors of 3 from the S-matrix re-evaluation of Wilke and Wunner, reflecting the extreme difficulty of generating accurate S-matrix numerics for fields below about \teq{4.4\times 10^{13}}Gauss. We find that our proper-time rates appear very accurate, and exceed Adler's asymptotic specializations significantly only for photon energies just below pair threshold and for supercritical fields, but always by less than a factor of around 2.6. We also provide a useful analytic series expansion for the scattering amplitude valid at low energies.Comment: 13 pages, AASTeX format, including 3 eps figures, ApJ in pres

    The effect of initial conditions on the electromagnetic radiation generation in type III solar radio bursts

    Get PDF
    Copyright 2013 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. This article appeared in Physics of Plasmas 20, 062903 (2013) and may be found at .Extensive particle-in-cell simulations of fast electron beams injected in a background magnetised plasma with a decreasing density profile were carried out. These simulations were intended to further shed light on a newly proposed mechanism for the generation of electromagnetic waves in type III solar radio bursts [D. Tsiklauri, Phys. Plasmas, 18, 052903 (2011)]. The numerical simulations were carried out using different density profiles and fast electron distribution functions. It is shown that electromagnetic L and R modes are excited by the transverse current, initially imposed on the system. In the course of the simulations no further interaction of the electron beam with the background plasma could be observed

    Nonlinear propagation of light in Dirac matter

    Full text link
    The nonlinear interaction between intense laser light and a quantum plasma is modeled by a collective Dirac equation coupled with the Maxwell equations. The model is used to study the nonlinear propagation of relativistically intense laser light in a quantum plasma including the electron spin-1/2 effect. The relativistic effects due to the high-intensity laser light lead, in general, to a downshift of the laser frequency, similar to a classical plasma where the relativistic mass increase leads to self-induced transparency of laser light and other associated effects. The electron spin-1/2 effects lead to a frequency up- or downshift of the electromagnetic (EM) wave, depending on the spin state of the plasma and the polarization of the EM wave. For laboratory solid density plasmas, the spin-1/2 effects on the propagation of light are small, but they may be significant in super-dense plasma in the core of white dwarf stars. We also discuss extensions of the model to include kinetic effects of a distribution of the electrons on the nonlinear propagation of EM waves in a quantum plasma.Comment: 9 pages, 2 figure

    The QCD phase diagram and the gamma-ray bursts

    Get PDF
    Phase transitions which can take place in matter at different temperatures and densities are seen in the quantum chromodynamics diagram. The possibility that gamma-ray bursts might result from a phase change in the interior of a pulsar is discussed in the present work. The energy released in the conversion of a metastable star into a stable star is calculated and shown to be of the order of 1050-1053 erg, accounting for both long and short gamma ray bursts.http://www.sciencedirect.com/science/article/B6TVB-4P2S5YJ-41/1/fb6d616877df41309e3835d333c5500

    A Free-Electron Laser in the Pulsar Magnetosphere

    Get PDF
    We have studied systematically the free-electron laser in the context of high brightness pulsar radio emission. In this paper, we have numerically examined the case where a transverse electromagnetic wave is distorting the motion of a relativistic electron beam while travelling over one stellar radius (approx10:km approx 10 :{km}). For different sets of parameters, coherent emission is generated by bunches of beam electrons in the radio domain, with bandwidths of 3 GHz. Pulse power often reached 1013:W10^{13} :{W}, which corresponds with brightness temperature of 1030:K10^{30} :{K}. The duration of these pulses is of the order of nanoseconds. In the context of pulsar radio emission, our results indicate that the laser can produce elementary bursts of radiation which build up the observed microstructures of a few tens of microseconds duration. The process is sensitive mostly to the beam particles energy, number density and the background magnetic field, but much less so to the transverse wave parameters. We demonstrate that the operation of a free-electron laser with a transverse electromagnetic wiggler in the pulsar magnetosphere occurs preferably at moder ate Lorentz factors gammageq100 gamma geq 100, high beam density ngtrsim0.1ntextrmGJ(rast)n gtrsim 0.1 n_{textrm{GJ}}(r_ ast) where ntextrmGJ(rast)n_{textrm{GJ}}(r_ ast) is the Goldrei ch-Julian density at a stellar radius rastr_ ast, and finally, at large altitude where the background magnetic field is low B0leq102textrmTB_0 leq 10^{-2} textrm{T}.Comment: 11 pages, 25 figures, Accepted for publication in A&

    Radio Spectral Evolution of an X-ray Poor Impulsive Solar Flare: Implications for Plasma Heating and Electron Acceleration

    Full text link
    We present radio and X-ray observations of an impulsive solar flare that was moderately intense in microwaves, yet showed very meager EUV and X-ray emission. The flare occurred on 2001 Oct 24 and was well-observed at radio wavelengths by the Nobeyama Radioheliograph (NoRH), the Nobeyama Radio Polarimeters (NoRP), and by the Owens Valley Solar Array (OVSA). It was also observed in EUV and X-ray wavelength bands by the TRACE, GOES, and Yohkoh satellites. We find that the impulsive onset of the radio emission is progressively delayed with increasing frequency relative to the onset of hard X-ray emission. In contrast, the time of flux density maximum is progressively delayed with decreasing frequency. The decay phase is independent of radio frequency. The simple source morphology and the excellent spectral coverage at radio wavelengths allowed us to employ a nonlinear chi-squared minimization scheme to fit the time series of radio spectra to a source model that accounts for the observed radio emission in terms of gyrosynchrotron radiation from MeV-energy electrons in a relatively dense thermal plasma. We discuss plasma heating and electron acceleration in view of the parametric trends implied by the model fitting. We suggest that stochastic acceleration likely plays a role in accelerating the radio-emitting electrons.Comment: 22 pages, 10 figure

    Spin-Dependent Cyclotron Decay Rates in Strong Magnetic Fields

    Full text link
    Cyclotron decay and absorption rates have been well studied in the literature, focusing primarily on spectral, angular and polarization dependence. Astrophysical applications usually do not require retention of information on the electron spin state, and these are normally averaged in obtaining the requisite rates. In magnetic fields, higher order quantum processes such as Compton scattering become resonant at the cyclotron frequency and its harmonics, with the resonances being formally divergent. Such divergences are usually eliminated by accounting for the finite lifetimes of excited Landau states. This practice requires the use of spin-dependent cyclotron rates in order to obtain accurate determinations of process rates very near cyclotronic resonances, the phase space domain most relevant for certain applications to pulsar models. This paper develops previous results in the literature to obtain compact analytic expressions for cyclotron decay rates/widths in terms of a series of Legendre functions of the second kind; these expressions can be expediently used in astrophysical models. The rates are derived using two popular eigenstate formalisms, namely that due to Sokolov and Ternov, and that due to Johnson and Lippmann. These constitute two sets of eigenfunctions of the Dirac equation that diagonalize different operators, and accordingly yield different spin-dependent cyclotron rates. This paper illustrates the attractive Lorentz transformation characteristics of the Sokolov and Ternov formulation, which is another reason why it is preferable when electron spin information must be explicitly retained.Comment: 11 pages, 2 embedded figures, apjgalley format, To appear in The Astrophysical Journal, Vol 630, September 1, 2005 issu

    Magnetic Photon Splitting: the S-Matrix Formulation in the Landau Representation

    Get PDF
    Calculations of reaction rates for the third-order QED process of photon splitting in strong magnetic fields traditionally have employed either the effective Lagrangian method or variants of Schwinger's proper-time technique. Recently, Mentzel, Berg and Wunner (1994) presented an alternative derivation via an S-matrix formulation in the Landau representation. Advantages of such a formulation include the ability to compute rates near pair resonances above pair threshold. This paper presents new developments of the Landau representation formalism as applied to photon splitting, providing significant advances beyond the work of Mentzel et al. by summing over the spin quantum numbers of the electron propagators, and analytically integrating over the component of momentum of the intermediate states that is parallel to field. The ensuing tractable expressions for the scattering amplitudes are satisfyingly compact, and of an appearance familiar to S-matrix theory applications. Such developments can facilitate numerical computations of splitting considerably both below and above pair threshold. Specializations to two regimes of interest are obtained, namely the limit of highly supercritical fields and the domain where photon energies are far inferior to that for the threshold of single-photon pair creation. In particular, for the first time the low-frequency amplitudes are simply expressed in terms of the Gamma function, its integral and its derivatives. In addition, the equivalence of the asymptotic forms in these two domains to extant results from effective Lagrangian/proper-time formulations is demonstrated.Comment: 19 pages, 3 figures, REVTeX; accepted for publication in Phys. Rev.
    corecore