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Abstract. We have studied systematically the free-electron laser in the context of high brightness pulsar radio
emission. In this paper, we have numerically examined the case where a transverse electromagnetic wave is
distorting the motion of a relativistic electron beam while travelling over one stellar radius (~ 10 km). For
different sets of parameters, coherent emission is generated by bunches of beam electrons in the radio domain, with
bandwidths of 3 GHz. Pulse power often reached 1013W, which corresponds with brightness temperature of 1030K.
The duration of these pulses is of the order of nanoseconds. In the context of pulsar radio emission, our results
indicate that the laser can produce elementary bursts of radiation which build up the observed microstructures
of a few tens of microseconds duration. The process is sensitive mostly to the beam particles energy, number
density and the background magnetic field, but much less so to the transverse wave parameters. We demonstrate
that the operation of a free-electron laser with a transverse electromagnetic wiggler in the pulsar magnetosphere
occurs preferably at moderate Lorentz factors y > 100, high beam density n > 0.1 nGj(r,) where nGj(r,) is the
Goldreich-Julian density at a stellar radius r,, and finally, at large altitude where the background magnetic field
is low B0 < 10-2 T.
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1. Introduction it. Current belief is that radio emission is related to
the development of a cascade of pairs of electrons and

Although radio pulsars have been dis_covered now fgr positrons on the open field lines anchored at the magnetic
more than three decades, the generation of the radio poles.

signal which reveals their existence, is still a puzzle. It is A5
believed that a pulsar is a rotating neutron star with a
high magnetic field (B * 105 —109T). The radio pulses
span a frequency range from ~ 100 MHz to ~ 30 GHz
and have the remarkable property that, in a given pulsar,
they vary dramatically from pulse to pulse, while the
average pulse profile is extremely stable and unique for
that pulsar. On one hand, the stability and uniqueness

important property of the pulses is their
high brightness temperature Thb, given by Tb ~
103% K Fjy dkpc rm2 Vghz, where Fly is the measured
flux in Jansky at the frequency vGHz for a pulsar at
distance dkpc and where r is the radius of the emission
region (in meters). For characteristic values: F ~ 1Jy,
d ~ lkpc at vV ~ 1GHz, this implies that the brightness

: temperature ranges from 1026 K to 1030 K, depending on
of the averaged pulse shape for every pulsar imply that \ypether the radius of the emission region is taken to be

the radio pulse is generated well inside the light cylinder the whole pulsar (r = r* ~ 104m) or only the polar cap
(defined as the cylinder with radius Rlc = ¢/Q*, where Q* (r = rpc = r* (Q*r*/c)-1/2 ~ 102m for P* = 2n/Q* = 1s).
is the rotation frequency of the pulsar and c is the speed ¢ ype emission process were incoherent this would imply
of light). On the other hand, the variability of successive the presence of energetic electrons (positrons) of indi-
pulses suggests that the radio emission process is strongly vidual energies E ~ kB T/me ~ 1010 —1018 GeV, which

fluctuating and/or that the acceleration of particles ..o yitficult to achieve in view of the maximum available
responsible for the emission is highly non-steady. The voltage jump in a rotating magnetic star inside the light

observations ir.1dicate that the. radi.ation is emitted MOTE  cylinder. Because of this, the mechanism responsible for
or less tangentla! “? the open field lines from the Magnetic e radio emission is assumed to be some form of coherent
poles and that it is pola.rlsed.preferentlally m .the local action. The emission can then be either an antenna or a
plane of the magnetic field lines and perpendicular to maser process. If the radiation source is located on the

open field lines above the polar cap a maser emission

Send offprint ~requests to: P.K.  Fung, e-mail process is most likely powered by a high-energy elec-

fungSastro.uu.nl
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tron/positron beam. Candidates for the emission process
are maser curvature emission (Luo & Melrose 1995),
relativistic plasma emission (Melrose & Gedalin 1999),
normal and anomalous Doppler instability (Lyutikov
1998), and linear acceleration emission (Melrose 1978).
Despite the efforts in the investigations over the past three
decades, the mechanism responsible for the radio emission
is still unknown.

The process studied here is a specific type of the free-
electron laser (FEL), a laboratory device which pro-
duces coherent radiation. In a FEL, a beam of rela-
tivistic electrons, with velocity v, passes through a pe-
riodic, electromagnetic field (called wiggler) and radiates
at the resonance frequency vres = wres/2n = +(2y2(ww —
kwv))/2n, where ww and kw are the wave frequency and
the wavenumber respectively associated with the wave-
length Aw of the wiggler. Under appropriate conditions the
radiation will be enhanced by the particles that follow, due
to the bunching of the particles. Previously mentioned lin-
ear acceleration emission (Melrose 1978) and coherent in-
verse Compton scattering (Schopper et al. 2002) are both
forms of this mechanism. They differ from the case here in
the sense that, in this study, particles will undergo a small
transverse displacement, whereas in the other two cases,
the distortion is along the path of the particles. Therefore,
the solution proposed here is only applicable for the region
where the background magnetic field is sufficient small, in
comparison to the magnetic field amplitude of the wiggler,
le. high up in the magnetosphere.

Applying the FEL concept to the pulsar, we will inves-
tigate as potential wigglers high-frequency Alfven waves
and other potential periodic structures in the pulsar mag-
netosphere. Such waves might be generated by a beam
instability of the (remnant of the) primary beam in the
ambient secondary pair plasma, or by the inhomogene-
ity of the pair plasma in which faster particles run into
dense clumps of pairs (Usov 1987; Asseo & Melikidze
1998; Melikidze et al. 2000). The efficiency of the FEL
interaction between these waves and the beam of pri-
mary/secondary particles is investigated by doing numer-
ical simulations.

In section 2 the basic concept of the free-electron laser
mechanism is presented in detail before it is applied to
the pulsar magnetosphere. A description of the simulation
code is given is section 3, and a summary of free-electron
laser parameters is found in section 4, In section 5, we
will present the results of the numerical simulations of
this process under pulsar magnetosphere conditions. The
conclusions and a discussion are given in section 6.
Throughout the paper, Sl units and Cartesian coordi-
nates, in which x is the position vector, with local mag-
netic field parallel to z are used.

2. The Model: A FEL in the pulsar magnetosphere

In this section the basic theory of FEL operation is ex-
plained.

Note that the FEL mechanism that we treat here is an
antenne process in which bunching occurs in space ("re-
active”).

2.1. Free-electron laser theory

2.1.1. 1-particle trajectory and resonance frequency

The relativistic equation of motion for a particle in an
electromagnetic disturbance (wiggler), with electric field
given by Ew and magnetic field by Bw, is given by:

dYmBc

dt @)

g[Ew + Rc x Bw]

where the electromagnetic field of the wiggler is described
by:

Ew(x,t) Ew cos(kwZ  wwt)x
Bw (x,t) Bw cos(kwZ  Wwt)y
Ew
sw ik = BC @

and Bw denotes the wiggler phase velocity normalised to
the velocity of light c. For a relativistic particle, with ini-
tial Lorentz factor yo = (1 —3z0)-1/2 ~ 1, the first order
approximation of (1), where we neglect the particle’ en-
ergy change, becomes:

d?e_ V2K Rz0\ '
= Fl o I cos(kwz 3)
dt yo V Bw J
The solution of this equation is:
'SIOK
Rx —V SllI(/ew2: 4

where n = qg/|q| and the strength of the wiggler is re-
expressed in a dimensionless parameter K, defined as:

gBwAwW
V87!

K (5)

Thus, the effect of the wiggler on the particle orbit is
adding a small sinusoidal motion in the direction of the
wiggler’s electric field, where the periodicity of this mo-
tion for an observer in the laboratory frame is given by

teff (6)
Up to the second order, the (angular) frequency of the
radiation emitted by a particle moving in this disturbance
is derived from (W —k ¢v) = £(ww —kwvz):

2y2("w - kwvz)
1+ K2

@

where we have used w —k v « w(l —Rz) for radiation
beamed forward and R2 = R2 —B" = 1—y-2 —K2y-2.
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2.1.2. Collective effect: bunching

The wiggler field causes a transverse motion of the par-
ticles (4). In presence of a radiation field Erad, Brad «
sin(kz —wt), which is set up by particles radiating at the
resonance frequency (7), the particles that follow will move
in a beat wave of the wiggler field and the radiation field.
This beat is often called the ponderomotive wave, for its
spatial energy density is highly non-uniform. The corre-
sponding ponderomotive force is Fp = glRxcx x Brad and
is therefore proportional to sin((k + kw)z —(w+ ww)t). The
beat which is proportional to sin((k —kw)z —(w —ww)t) is
superluminal, and, therefore, has no immediate particle-
wave resonances.

This force acts on the beam in the z-direction and drives
a longitudinal current SJz = gnvp, where q is the elemen-
tary charge of the beam particles, n is the number density
of the particles and vp is the velocity which is induced by
the motion in the ponderomotive wave. As a result, like
Fp, SJz is proportional to sin((k + kw)z —(w + ww)t) as
well. Related to SJz is a density modulation according to
gqdSn/dt = —V «SJzZ This density modulation is observed
as bunching of the particles. Note that the bunches occur
at the ponderomotive wavelength

Ap = 2nk— ®)

where kp = kw+ k. Due to this bunching, the transverse
current is in phase with the ambient field (SJ* = gSnvw «
sin(kz —wt)), i.e. particles in the bunch radiate in phase
and enhance the ambient radiation field.

2.2. Background Magnetic Field

The effect of a background magnetic field B = B0z lim-
its the particle’s motion perpendicular to the field. The
equations of motion for a particle now become:

— —= VXuiw "1 —~~j sin(kwz —ivwt) + O,BORy (9)

(10)
d-IR z fF, TsBx /11\
“dT = (11)

where K is defined by equation (5) and 1B = |q|B/m is
the non-relativistic gyrofrequency for a particle (mass m,
charge g) in a magnetic field with strength B. For zero
background magnetic field, the equations reduce to (1).
In the presence of a uniform background magnetic field,
the first order solution for the particle’s velocity compo-
nents (the x- and y-component) are coupled to each other
through ilBo. The particle is no longer free to resonate
with the wiggler, but is bounded by the magnetic field.
This restriction limits the particle’s ability to resonate
and, therefore, also the FEL laser action.

Fig. 1. Values for which ww, kw and y give rise to radio
emission between 100 MHz (lower solid line) and 10 GHz
(upper) according to the resonance condition (7) with
K = 10. On the vertical axis is plotted kwv —ww, be-
cause we assume the particle’s velocity to be larger than
the wiggler’s phase velocity.

2.3. Application in the pulsar magnetosphere

Our aim is to apply the mechanism to the pulsar mag-
netosphere, while making as few assumptions as possible.
As is common to most pulsar models, we assume that a
large electric field is set up along the open field lines above
the polar caps due to the fast rotation of the magnetised
neutron star. This electric field pulls out and accelerates
electrons, which, in the presence of a strong magnetic field,
are in the lowest Landau level and thus move along the
magnetic field lines. At some altitude above the pulsar
surface - between a few polar cap radii and a few stellar
radii - a dense plasma of electron-positron pairs is pro-
duced, either from curvature radiation of the primaries in
the strong magnetic field or from their inverse Compton
radiation. Very likely, the entire process is only stationary
in an average sense but highly variable in space and time
on small scales with inhomogeneous distributions of pair
plasma intermingled with primary beams.

In our model, we investigate radiation from a mono-
energetic beam of electrons in the presence of a subluminal
transverse electromagnetic wiggler.

In theory, radiation of any frequency can be obtained
by tuning ww, kw and y. For radiation at frequencies
vres = wres/2n in the range of 108 and 1010 Hz, and paral-
lel wave vectors kw || v, the required Lorentz factors range
from unity up to 107 (Fig. 1).

Near the stellar surface, particles move one-dimensionally
along the magnetic field lines due to extremely fast syn-
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chrotron losses in the strong magnetic field. The quantity
Pj_/Bo is not invariant anymore when the timescale at
which the magnetic field changes, is small compared to
one gyration period in the background magnetic field, i.e.:

Bo 2ny
------------- e (12)
dBw/dt ilBo
and in our case, using (2):
Bo <C 2n< YmcBw(RZQ RBw) (13)

q Aw

So, if the last inequality is satisfied, a particle moving in
the background magnetic field acquires momentum trans-
verse to the magnetic field.

Next to consider is the synchrotron loss time, which needs
to be larger than the FEL timescale when the latter pro-
cess causes the pulsar radio emission. The synchrotron loss
time t 1/ 2, the time within which the particle looses half of
its initial energy E = Ymc2, is defined ast1v2 = E/(2P),
where P = Y2R+0?Bo/(6neoc) is the power of synchrotron
radiation emitted by a charged particle moving in a back-
ground magnetic field Bo and R~ is the component of the
normalised velocity perpendicular to B0O. By using the up-
per limit for Bo (13), we find for t v 2

1 3eomc P, 1

. (14)
T2 > 2 212 (Rz0 - Rw)2 if27

where we used BN « K/y from (4).

On timescales much smaller than t%2, a change of the
particle energy due to synchrotron radiation can be ne-
glected.

In our calculations, we used parameters such that firstly,
the resonance is in the radio regime (7), secondly, the in-
equality (13) is satisfied so that particles can (and do) ac-
quire transverse momentum, and finally, the synchrotron
emission can be neglected (14).

3. Numerical Simulations

This section describes how the ingredients for the FEL in
the pair plasma of a pulsar magnetosphere are represented
in our numerical simulations. The Coulomb interactions
between the particles in the beam are neglected, due to
the large Lorentz factors. This is because, although the
beam particles generate an electric field radially outward
Er, due to their relativistic speeds, the generated magnetic
field (in the azimuthal direction) reduces the electric field
by a factor of 1—82, where B is the particles’ speed. This
results in a reduced radial Lorentz force Fr = qEr/y 2.
Furthermore, the role of the pairplasma is mainly in pro-
viding the wiggler. Therefore, we model the presence of
the wiggler by equations (2) rather than generating it in
a consistent way.

First, we give a brief introduction to the code. Then, the
parameters for each ingredient in the case of N-particles
simulations are given.

3.1. Code General Particle Tracer (GPT)

We will investigate radiation from a relativistic electron
beam travelling through a wiggler, and the formation of
bunches is tested by doing numerical simulations with a
code called General Particle Tracer (GPT)1.

This code solves the equation of motion of each
(macro)particle in the time domain numerically. For each
macroparticle, labelled i, the differential equations

d7dii3i W[E(X' t) + Vi(t) x B(x, t)]
dxj YiRic
dt *

are solved numerically with a fifth-order embedded Runge-
Kutta ODE solver Press et al. (1992). Here y = (1 —
R2)-1/2 is the Lorentz factor, # = v/c, and E(x,1),
B (x, t) are the electromagnetic fields in which the particle
is moving at position r and time t. Because a macropar-
ticle represents Nq particles of elementary mass me and
charge —e, the fraction g/m in the equation of motion is
the same as in the case of single electrons. The electric field
consist of two parts, E(x,t) = Ew(x,t) + Erad(x,t), where
Ew(x, t) is the wiggler field and Erad(x, t) is the radiation
field, of which the development is studied in time; the same
holds for B(x, t). The space charge effects of the particles
in the beam are neglected. The initial conditions of the
particles (i.e. number of charged particles, mass, charge,
initial distributions in coordinate and velocity space) as
well as the spatio-temporal behaviour (including initial
amplitude and phase) of the wiggler, are user-specified.

To find the radiation in the simulations, a set of differential
equations for the radiated energy are solved, additional to
the differential equations (15). To derive this set of differ-
ential equations, we first note that there are two essential
differences between a FEL in the lab and our astrophys-
ical application: firstly, there are no reflective mirrors in
the neutron star magnetosphere. For a FEL to operate un-
der such conditions, it should be a high-gain, single-pass
process. Secondly, there are no side walls bounding the
FEL cavity in the magnetosphere. This is accommodated
in our pulsar study by using Gaussian modes of which the
field decreases in a gaussian manner to zero away from the
axis.

The radiation electric field is splitted into a set of Gaussian
modes (see Appendix A):

Erad(x,t) (16)

N2 Ej(X,t)x

(17)

Ej (x,t) AjTj cos(0j)

1 see http://www.pulsar.nl/ for a description of the code and
other publications with this code
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where

Jwo_
Wj (2)

-ri/w|(z)

Tj = (18)

—arctan

0; &jt —kjz —
] e o+ 22))

z_o,j‘)+6’(19)

where we have chosen cylindrical coordinates (z, ri =
(x2 + y2)1/2), and the polarisation is chosen to lie in the
x-direction, in agreement with the polarisation of the wig-
gler which is expected to generate radiation polarised in
the x, z-plane. Note that, there should be a small compo-
nent of electric field in the z-direction as well. But since
this is negligible, as compared to the x-component of the
Gaussian mode, its interaction with the particles is ne-
glected in the calculations.

Further, wj(z) = wo”Jl + z2/z2”" is the waist, wq is the

waist at z = 0, and z0j = (1/2)kjw” is the characteris-
tic distance where the wave starts to diverge, Aj is the
amplitude of this wave at wavevector kj, = kjc is the
corresponding angular wavefrequency, and is an arbi-
trary phase.
Note that Gaussian modes propagate initially only in one
direction and, therefore, they are suitable to describe nar-
row beams of pulsar radio emission. Figure 2 shows the
wavefront of a Gaussian mode (dotted line) ; the solid lines
are level curves at e-1°-2" of the maximum amplitude
(left: near-field, right: far-field). As the figure shows, the
wavefront of a Gaussian mode changes from planar to
spherical. The asymptotic opening angle ¢ of this wave
is given by:
A
2nzo

(20)

In the GPT, the user specifies the minimum and the max-
imum frequency of the Gaussian modes and the num-
ber of modes in this range. The frequency intervals are
equally spaced (given by ANm) and each is represented
by a Gaussian mode with wavevector k. The spectrum in
this range is represented by the sum of these modes (equa-
tion (17)). When the radiation of the pulsar is assumed
to be due to a FEL, then this set of Gaussian modes de-
scribes the radiation properly.

To continue the derivation of additional differential equa-
tions, we use conservation of energy: the energy gain/loss
per unit time of the ith macro-particle with charge Qi =
N qqi due to the interaction with the jth electric field com-
ponent is given by: nqivie*Ej, which is balanced by the rate
of change of the electromagnetic fields. The total power
radiated P = dWi;ght/dt is obtained from:

L . dWiight
Nqgivi eEj + dt 0

(21)
where the summation is over all N particles and Nm
Gaussian modes.

Instead of calculating the change in amplitude and phase
of each mode directly, GPT rewrites the amplitudes and

Fig. 2. Wavefronts (dotted lines) and level curves at e n
of the maximum amplitude of the Gaussian mode (solid
lines, n = 1,2,..); left: near-field, right: far-field. z is in
units of zo and ri in units of wO.

phases into two other independent variables mj and nj:

Aj = yjto2+ n2/ ANm

arctan(nj/mj)

(22)

Inserting equations (22) into the conservation of energy
gives two differential equations for mj and nj (j = 1.
Nm):

dmj \ ' NggqiANm
N - ~ * ] 1ol
dt 2 nW%HEoIZ V*,iT3 COSiej)
dnj N qqiAN
) AN axiT] cos(oj ) (23)
dt nw”eol

where L is the cavity length.

A factor ANm enters Egs. (22) and (23) because one mode
represents a frequency interval. This gives the correct cal-
culation of mj and nj, which is dependent on ANm, and
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ensures that the resulting spectrum, represented by Aj’s,
is independent on the number of modes used.

The wiggler part of the electromagnetic field is assumed
to have a time-independent amplitude during passage of
the beam, and is not included here, for we assume that the
change in the wigglers’ energy is small on the considered
timescales.

Summarising, the differential equations solved at time t
by GPT consist of the 2N equations:

—t7-1 = Eic[E(X’I)JrVJ(I)XB(X’I)]
dxj YiRic
dt
\iliRi + 1

for the N charged particles’ phase space positions, and the
set of 2Nm equations:

dmj
dt
dnj NqgjAN,, .
dt AwAeoL vXiTk cos(0j)

for the total number of modes Nm included in the sim-
ulation, to calculate the amplitude and phase at each
wavenumber in the specified range during the interaction
with the particles. As a result we obtain the spectrum of
the radiation in time.

To retrieve the pulse in the time domain, both the elec-
tric field and the power are Fourier transformed from the
frequency to the time domain, and Parseval’s theorem is
applied to the results to ensure a correct transformation
between time and frequency domain.

Note that the results obtained with this code are inde-
pendent of the number of time outputs, the number of
macroparticles and the number of modes.

4. Physical Parameters for Numerical Simulations

Except in the second last run of the simulations, we
used a beam of 200 macroparticles with a total charge of
—6 *10-4 C. These are uniformly distributed in a cylinder
with radius of one metre and length of three ponderomo-
tive wavelengths (8), which varies from run to run. The
corresponding electron number density is 1.59 <1016 m-3.
This is 0.23 times the Goldreich-Julian density at the
stellar surface, given by nGJ(r*) = 2e00 «B*/q, for a
reference pulsar with i1 = 2n/P, where P = 1s and
B* = 108 T. Except in the last run, each macro-particle’s
initial Lorentz factor is y = 1000.

The wiggler is an electromagnetic disturbance propagat-
ing in the z-direction. In the pulsar magnetosphere, the
scale at which the physical parameters change, e.g. back-
ground magnetic field, is of the order of z/r* (> 10 km).

Therefore, the interaction between the beam and the wig-
gler is simulated until the beam particles reach this dis-
tance, sotend « 3.3-10-5s. The parameters for the wiggler
are given in Table 1 (all labelled with “w”). The values
for the magnetic induction and angular frequency are ob-
tained from (2).

In the first run, the wiggler’s phase speed is 0.9c. The am-
plitude of the magnetic induction Bw is 3 «10-3 T. The
wavelength Aw is 50 metres. These values are chosen such
that the resonance is at radio frequencies, and the strength
of the magnetic induction is chosen such that the induced
transverse velocity is small compared to the initial axial
velocity (K/y ~ 1in Equation (4)).

In the subsequent runs we investigate the effects of varying
each of these parameters as compared to the results of the
first run. In run 2, the wiggler strength K is increased from
five to twenty, in steps of K = 5 (correspondingly the mag-
netic induction is increased in steps of Bw = 1.5¢10-3 T).
In the third run, the wavelength of the wiggler takes the
values 25, 40, 50 and 100 m. In run 4, the velocity of the
wave is changed from 0.2 to 0.9.

In run 5, we study the effect of a non-zero background
magnetic field. We took the most simple case is which the
field in uniform (in z) and has a background magnetic field
strength of Bo = 10-3, 10-2, 2.5 «10-2, 5+10-2 T.

In run 6 as we change the number density n of the elec-
tron beam. In terms of the Goldreich-Julian density, the
fractional density ranges from 0.4 to 0.1.

Finally, in run 7, we lower the Lorentz factor of the beam
particles (the resonance frequency depends on this as
wres « y?2). The Lorentz factors are chosen: y = 1000,
500, 250, 100.

5. Results

Figs. 3a(Run 1) to 9c(Run 7) and Table 1 show the end
results of all runs, i.e. att = 3.3 +10-5 s. Rather than dis-
cussing the runs sequentially, we present the systematic
trends of our computations, using the figures as illustra-
tions. Run 5, where a uniform background field is included,
is presented separately.

5.1. Bunching

We found bunching of particles during their interaction
with the wiggler in a number of cases. Run 1 clearly shows
this bunching (Fig. 3a). Here, the particles are plotted
in (z,x)-projection at different stages of their interac-
tion: bunch formation (t = 1.33 «10-5 s), ‘de-bunching’
(t = 2.010-5 s) and ‘re-bunching’ (t = 2.67 «10-5 s). Note
that the distance between bunches is Ap as expected.

An alternative illustration of the formation of bunches is
found in Fig. 3d, where the average Lorentz factor per
macro-particle 7 is plotted. Evidently, the formation of
bunches corresponds to a steep drop of 7 (e.g. Fig. 3d,
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Run Input parameters Output

n K Av Rw B Voen Av
(RGF*) (m) M (GHz) (GHz)
1 1000 0.23 10 5 09 0 11 242
2 - 5 - - _ 428 9.72
10 - - _ 11 242
15 - - _ 4.96 1.02
20 - - _ 234 0.53
3 - 5 - - 22.2 38
- - 40 - _ 138 2.86
- - 50 - _ 1 242
- - 100 - _ 557 128
4 - - - 0.2 _ 88.5 141
- - - 05 - 55.7 8.12
- - - 0.8 _ 22.2 379
- - - 09 - 1 242
5 - - - - 1043 109 243
- - - - 0.01 218 0.61
- - - - 0.025 n n
- - - - 0.05 n n
6 - 0.1 - - - _ 11.37 153
- 0.2 - - - - 11.1 2.22
- 0.3 - - - _ 109 301
- 04 - - - - 107 340
7 1000 - - - _ 11 242
500 - - - _ 272 0.80
250 - - - - 0.69 0.16
100 - - 0.09 0.006

7
Energy densities
Prmax T ) ebo
(103W) (100 K) (106 Jm™-3) (m“3) (Im“3) (102 ?m-s)

9.09 1.02 130 8.15 0 8.25
36.6 104 _ 204 _ 345
9.09 1.02 _ 8.15 _ 8.25
3.67 116 _ 8.35 _ 3.46
161 0.9 _ 32.62 _ 150
952 144 32.6 9.00
942 1.02 _ 10.07 _ 8.89
9.09 134 _ 8.15 _ 825
7.02 170 _ 203 _ 6.63
9.59 0.215 _ A9 _ 9.00
9.%4 0.37 - 182 - 9.00
9.39 0.79 _ 9.35 _ 8.86
9.09 1.02 - 8.15 - 825
9.46 74 _ - 04 8.85

27 136 - - 40 2.55
0.455 n - - 248 -102 428-10-2

6.36 - 10-4 n _ - 9.95 -102 s

179 0.38 2.30 - =P

7.2 107 176 - - 6.8
165 173 115 - _ 155
29.9 2.8 0.575 - - 282
9.09 124 13 - _ 8.24
177 0.72 0.16 - _ 1.66
0.112 0.23 0.02 - - 0.10

2.7-10-4 46-10-3 136-10°3 - 25-10-4

Table 1. Input parameters and results for all simulation runs. Input parameters are: electron initial Lorentz factor 70,
number density in the beam n in terms of Goldreich-Julian density at the pulsar surface nGj*, dimensionless wiggler
strength K, wiggler wavelength Aw, dimensionless wiggler phase speed 8w and (uniform) background magnetic field
B 0. Results from the numerical simulations are: central frequency vcen, FWHM bandwidth of the radiation Av, peak
power of the light pulse Pmax, and brightness temperature corresponding to the peak power Th. The last four entries
are the energy density of each ingredient in the simulation: beam eb, wiggler ew, background magnetic field ebo and

pulse ep. Note that every time

appears, it means the entry has the value as in Run 1. In Run 5, n appears for

vres, Av and Th, which means, that for those cases, the spectra are flat, no peaks are seen, and also the brightness
temperatures which depend on the bandwidths are not calculated.

the first bunch formation starts from t — 1.0 «10 55 to
1.8 «10-5 s, and the second formation from 2.4 «10-5 s to
2.8 *10-5 ).

We notice that both the bunch duration and the beam
energy loss is larger for the first bunch formation.
Saturation is reached due to an increased velocity spread.
Therefore, for the second bunch formation, the beam
starts with a certain spread in velocity, and it reaches
saturation quicker than in the initial bunching.

For the beam number density of n = 0.23 nGJ*, we find
a beam energy loss to radiation of ~ 5%, after the first
time bunching. This number is only affected by n. The
number of particles in each bunch scales with n, as does
A7 (Run 6, Fig. 8c), which agrees with coherent losses.
As to the starting time of the first bunching, we find
the following: for the same beam and different wiggler
parameters (Bw and Aw), about ten oscillations of the
particles in the wave as seen by the observer are needed
before they start to bunch (Run 3, Figs. 5¢ and Run 4,
Fig. 6c). For the same wiggler, increasing the beam
density or decreasing the Lorentz factor give rise to
earlier occurence of bunching (Run 6, Figs. 8c and Run 7,
Fig. 9c¢). This suggests that the bunching sets in when
the (incoherent) radiation reaches a certain level, because
the ponderomotive force is dependent on the radiation
field.

As for the wiggler strength K, it determines the maximum
beam energy loss during bunching. In Fig. 4c(Run 2) are
shown (7, t)-plots for K = 5,10,15, 20. We have also run
cases for K < 1. The maximum energy loss occurs when
K =1.

5.2. Coherent radiation

That the radiation is coherent is demonstrated by the
power of the radiation pulse (Fig. 3b). At the top is pre-
sented the simulation run for N = 200 macro-particles
and at the bottom for N = 2 macro-particles. The max-
imum pulse power for N = 200 is P200 = 9.09 « 1013 W
and for N = 2, P2 = 9.75 «109 W. If the radiation were
incoherent emission from 200 macro-particles, we would
expect P « N, where N is the number of particles and
(P200/P 2)inc = 100. However, the simulation shows that
(P200/P2) — 9 +103 , and thus P « N2, demonstrating
that the radiation is coherent.

Note that only the maximum of the first peak satisfies
P200 « N 2. This is not the case for the second peak in
Fig. 3b, where now P200 « 2 1013 W, which is less than
the coherent case but much more than if it were incoher-
ent.
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5.2.1. Spectrum

The radiation frequency in our simulations agrees well
with the expected resonance condition (compare eq. (7)
and Table 1). Therefore, by construction, the frequency of
the emission is in the radio regime, between 1~ 10 GHz.
In some cases, the central frequency is lower than the res-
onance condition (Run 2-4: Fig. 4a, 5a, 6a). The shift in
these cases is caused by multiple bunching where the av-
erage Lorentz factor decreases after each bunching, and
therefore, also the frequency as determined by the res-
onance condition. As a result of multiple bunchings, the
total bandwidth increases (Runs 3, 4, 6 in Figs. 5a, 6a, 8a),
whereas the relative bandwidth Av/v decreases.

5.2.2. Pulse shape, power, brightness temperature and
radiation cone

The pulse shapes of the coherent radiation can be found
in Figs. 3b, 4b, 5b, 6b, 8b and 9b.

The number of temporal peaks corresponds to the num-
ber of bunching times (not the number of bunches that
is formed); e.g. in Run 1 (N = 200) the beam particles
bunched twice (Fig. 3d), and the pulse has two peaks
(Fig. 3b). The maximum pulse power always occurs at
the first time bunching. The following bunch formations
result in less powerful pulses (though not completely in-
coherent). The maxima of the pulses have the same order
of magnitude for most runs (Table 1), except for 7 = 100,
where the coherent emission becomes less efficient (and
also for Bo = 0.05 T, but this is discussed in the next
section). The optimum efficiency of the emission power
is reached for 7 ~ 300 as follows from the ratio ep/eb
(Table 1, Run 7: Fig. 9b)

The structure within each pulse reflects the wiggling mo-
tion of the particles (e.g. Fig. 5b, where Aw = 100 m).
The typical duration of the pulse is a few nanoseconds.
The brightness temperature Th is derived using

&BThV W /At
c2 AAI/AQ

where | is the radiation intensity, kB is Boltzmann’s con-
stant, W /At is the power, which we take as Pmax, A is
the emitting surface, which corresponds to the beam cross-
section, Av is the bandwidth, and AQ = ntan2” the solid
angle into which the radiaton is emitted (20).
Converting the maximum power into the brightness tem-
perature, we find that, again, for most cases the brightness
temperature is approximately 1030 K (Table 1).

(24)

5.3. Background magnetic field

An ambient magnetic field in the z-direction (Run 5)
can have a drastic effect on the bunching (Fig. 7c). For
a background field just smaller than the wiggler field,
Bo = 10-3 T, the particles’ behaviour shows no difference
with the simulations where the background field is absent.
For Bo = 10-2 T, we still observe bunching. For larger

values of BO, however, bunching disappears completely.
Actually, such behaviour is expected from equation (13):
since the motion of the particles is no longer free in the
transverse direction , the ponderomotive force is less ef-
fective and the resulting bunching is less pronounced. For
all runs, the angle between the particles’ velocity and the
total magnetic field B = Bo + Bw, which is proportional
to v *B is indeed found to be nonzero.

Since only the cases where Bo < 10-2 T show bunching,
these are discussed further. The spectrum for this run is
plotted in Fig. 7a. Only for Bo = 10-3 T, the charac-
teristics of the spectrum are similar to the cases where
Bo = 0OT. For Bo = 10-2 T, the resonance frequency
shifts to vres = 2.18 GHz (as compared to the expected
value of 11.9 GHz). The bandwidth is 0.61 GHz, and is
much smaller than before.

6. Discussion

We have investigated a specific form of a single-pass free-
electron laser process as a possible mechanism to produce
high brightness radio emission of pulsars. We have investi-
gated the operation of a FEL in the presence of a wiggler
which consists of a transverse electromagnetic disturbance
as it is being overtaken by a relativistic electron beam.

We have shown that, in principle, a FEL can operate in
the pulsar outer magnetosphere in the presence of a trans-
verse wiggler. The deciding factors for particles to bunch
and emission to be coherent within 3.3 «10-5 s, are the
following: a large beam particle density n > 0.1 nGj(r*), a
Lorentz factor of the beam particles 7 > 100 for K = 10,
and a small background magnetic field Bo < 10-2 T. The
brightness temperature of the pulse depends sensitively on
these parameters (Table 1).

The required beam particle density together with the wig-
gler’s parameters mainly determine the timescale on which
particles start to bunch. Bunching occurs after about 10
times the transit time through the wiggler (i.e. 10 teff,
eq. 6). This seem to set the level of inchorent radiation,
which is then large enough for the ponderomotive force to
act on the beam particles. Then the timescale over which
a bunch stays together is about one teff, i.e. coherent ra-
diation only occurs during this period. Due to an increase
in axial velocity spread, debunching occurs. Although par-
ticles rebunch, the associated pulse is weaker due to the
velocity spread in the bunch. In the pulse profile, the first
bunching results in one pulse. Then for larger times, parti-
cles bunch more often and the pulse acquires more peaks,
which are less powerfull.

The overall fractional energy losses of the beam are ~ 5%.
Together with the travel time, the calculations demon-
strate that when applied to the pulsar magnetosphere for
B < 10-2 T, the FEL interaction can produce coherent
radiation. For a dipole model, this implies R ~ 2 «103R*,
where we used B* = 108 T, i.e. in the outer magneto-
sphere.

While the particles are bunched, most radiation is at vres,
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which in our runs varies from 0.7 GHz to 90 GHz as in
the pulsar radio emission. The lower frequency is obtained
with y = 250.

The particles lose their energy most efficiently for K = 1.
The measured FWHM bandwidth for the radiation Av
ranges from 0.53 GHz to 14.5 GHz, and is broadband
Av/v ~ 0.07 —0.5. The width of the spectrum highly
depends on the number of bunching events occurring dur-
ing the simulation. After the first bunching, the band-
width is of the order of 1.5 GHz; After the second -less
effective- bunching, Av « 2.9 GHz and so on. Of course,
the central radiation frequency agrees with radio pulsar
emission by construction. However, it is interesting that
the bandwidth is found to agree with pulsar radio obser-
vations where average pulses and microstructures are ob-
served from about 100 MHz to more than 10GHz (average
pulses: e.g. Lyne & Manchester (1988); Manchester et al.
(1996); Lyne et al. (1998); D’Amico et al. (1998), mi-
crostructures: e.g. Rickett et al. (1975); Bartel & Sieber
(1978)).

As for the brightness temperature Th, which is a big ob-
stacle for most radiation processes, we found a brightness
temperature Tb at pulse maximum of 1030 K for Bw = 0.9
and Th = 1029 K for a wiggler phase velocity Rw < 0.8,
similar to the observationally derived pulsar brightness
temperatures.

Apparently, the FEL is able to produce the required high
brightness pulse. Further, the characteristic opening an-
gle, given by tan”® « A/(2nw0), is » < 1° Again, this
agrees with the observed values in pulsar radio emission,
as estimated from the microstructure duration relative to
the pulsar rotation period: ~ 1007s/P x 360° < 1° for
P=01s.

The radiation pulse has a duration of 2 ns. The short-
est elements of radio emission measured from pulsars
are microstructures. These are quasi-periodic structures
of ~ 1025 which are broadband and highly (linearly)
polarized (Rickett et al. 1975; Cordes & Hankins 1979;
Lange et al. 1998; Popov et al. 2002).

Since the starting time for the particles to bunch is 10teff =
10AwW/ (B z —Rw), the faster the wiggler wave is, the longer
it takes for the particles to get bunched. Also, the charac-
teristic pulse duration teff increases. This is clearly shown
in Run 4, where we varied the phase velocity of the elec-
tromagnetic disturbance between 0.2c and 0.9c. The com-
putation time limitation forced us to consider only such
relatively low values for electromagnetic wigglers in the
relativistic outflow from a pulsar magnetosphere, but one
can see from the particles’ behaviour in Figure 6c, that
even more relativistic electromagnetic disturbances would
lead to longer timescales, e.g. for yw = (1 —Rw)-1/2 =
100, the timescale would go up by a factor 5000, and be-
come comparable to the observed micropulse durations.
(The same argument holds for a lower beam number den-
sity n, Fig. 8c;i.e. when n < 0.1nGJ* bunching occur at
t > 3.310-5 s).

Finally, we note that the coherent emission from electrons

and positrons in a transverse wiggler add constructively.
Therefore, the total number of electrons and positrons in
a bunch, and not the charge excess, determines the emis-
sion.

In summary, the operation of a single-pass high-gain FEL
with a transverse electromagnetic wiggler within the pul-
sar magnetosphere in the radio regime, requires a mono-
energetic beam of electrons/positrons at moderate Lorentz
factors in a sufficiently small background magnetic field.

We expect a FEL process to be also possible much
nearer to the pulsar, where the magnetic field strength
is large and the dynamics of the particles are one-
dimensional, when longitudinal instead of transverse wig-
glers are used. This would be the domain of single-pass,
high-gain Cerenkov FELs, and a next logical step to study.
Strong Langmuir turbulence has been studied in this con-
text by (Schopper et al. 2002). By using a Particle-in-Cell
method, these authors show that electron scattering on
Langmuir turbulence, which is excited in a self-consistent
way, results in high power output of radiation.
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Appendix A: Derivation of Gaussian modes

The full derivation of the Gaussian modes can be found
in Milonni & Eberly (1988) and Erikson & Singh (1994).
As the radiation is produced by a narrow beam of rela-
tivistic particles the radiation propagates mainly in one
direction (z-axis). As to the dependence of the radiation
in the (x,y)-plane, we assume that, similar to a laser beam,
the intensity has a Gaussian form inside the FEL; i.e.
I+ oc e~(r+/w®) where r+_ = \Ux? + y1 and wo denotes
the transverse distance where the intensity drops to 1/e
of the peak value at z = 0 (wo is called the waist).

The electromagnetic field which has these properties and
satisfies Maxwell’s equations is the Gaussian mode. The
derivation of Gaussian modes starts from Maxwell’s equa-
tions in vacuum, which result in the (vector) wave equa-
tion:

VIE(r 1) — 1 @E(r,t)

A.l
c2 dt2 (A1)

For vacuum waves (w2 = k2c2) propagating mainly along
the z-direction, the paraxial approximations can be ap-
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plied:
d2E(r) dE(r) A2)
dz2 dz
d2E(r)
422 2K |E ()] (A.3)

W ith these, the vector wave equation becomes the vector
paraxial wave equation:

V IE (r) + 4z - 0
where VT = d2/dx2 + d2/dy2. This equation is valid for
each component of E (r) = Ex(r)x + Ey(r)y + Ez(r)z. The
same holds for B(r).

The general solution for each component of this equation,
which is axisymmetric, is the following:

(A.4)

2
u(rx,z) = aexp(-P(z))exp(-~") (A.5)
where a is an amplitude and P(z) and Q(z) are complex
functions which specify the longitudinal and transverse
mode behaviour. These can be retrieved by putting (A.5)
into (A.4), which results in two differential equations for

P(z) and Q(2):

dg

1 A.6
d2 (A.6)
t - h <a-7>
The solutions are simply given by:
Q(z) = z+ qo0 (A.8)
P(z) = —In(z + qo) (A.9)

where qo is an integration constant. Recall that function
Q(z) gives the transverse behaviour of the mode and that
the solution is paraxial. Therefore, Q(z) can be written in
terms of a radius of curvature R(z) and a width w(z):
1 _ i i -2
Q(z) z+q0 R(z) kw2(z)

Furthermore, we assume that at a reference point z = 0,
the mode wavefront curvature is R(0) = to, so that:

ikw2(0)
Qo = ) (A.11)
Together with:
P(z) = —iIn(z +iz0) = —iIn [(z2 + z"e®"] (A.12)
= —iIn[z2 + z2] + arctan(zo0/z) (A.13)
kw”?
z0 = | » (A.14)
tano = ? (A.15)
the general solution becomes:
w(rj,z) = A— X
(2= AL
A.16
Re ewdfcz+iW t-ik " -0 (A19)

where
2
w(z) = Wo4/l + 9 (A.17)
, NVVQ
2
R(z A.18
@ oz 4 (A.18)
. Az
tail p = —2" (A.19)
0
where r+ and wo are as defined above, w(z) is the waist
at z and A, k,w are the amplitude, the z-component of

the wave vector and the frequency of the electromagnetic
wave respectively. The curvature radius of the wavefront is
given by R(z) = z+z2/z, where zo = (nw2)/A is (roughly)
the separation between the near and the far field. The
wavefronts of this mode change from planar in the near
field to spherical in the far field (see Fig. 2).

The opening angle ~ of the intensity of the mode is given

by:
1/-w(z)

tan</3 = Sv 2------ = \ype- A.20
Y 2 z \[2‘kzo ( )
W ithin distance of length z0, wavefronts of the Gaussian
modes are considered planar. Different wavelengths and
different zo result in different opening angles. In table A.1
is listed the range of opening angles when we consider
radio waves with wavelengths between 3 cm to 30 m and

some typical distances in the pulsar magnetosphere.

Z0 0

polar cap radius Rpc = 100 m 24’ - 3°57’
stellar radius R* = 104 m 2723 - 24°
light cilinder Rlc = 107 m 4”5 - 45”

Table A.1. The range of opening angles ~ for different
z0 and wavelengths between 3 cm and 30 m according to
equation (A.20).
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Fig. 3a. Run 1: (z,x)-behaviour of the particles during

their passage in the cavity (from left to rigth; from top to
bottom). On the horizontal axis is plotted the z-coordinate
of all particles, subsequently forz = 2, 4, 6, 8 and 10 km.
Except fort = 3.34 «10- 55, the horizontal spacing between
the long ticks is 0.02 m (e.g. Az « 0.08 m fort = 05). In
the last plot, the spacing between the long ticks is 0.05 m.
Bunching clearly occurs att = 1.33 «10-5 s, ‘de-bunching’
att = 2.0 +10-5 s and ‘re-bunching’att = 2.67 «10-5 s.

t (10-9 5)

t (10-9 )

Fig. 3b. Run 1. Power of the pulse at the end of the
simulation t = 3.3 «10-5 s (top: number of macroparti-
cles N=200; bottom: N=2). On the horizontal axis is also
plotted t, this is not the simulation time, but the dura-
tion of the pulse as a distant observer would measure.
Negative t corresponds to earlier arrival. The maximum
power for N = 2 (bottom) is P2,max = 9.75 <109 W. Since
P200 « N2P2, this implies the radiation pulse at the top
is coherent.
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y (1010 Hz)

Fig. 3c. Run 1: Spectrum att = 3.3 «10-5 s. The cen-
tral frequency is at v =11 GHz, with FWHM of Av =
2.42 GHz. The peak on the right, centered on vres =
11.9GHz, is caused by the first bunching att = 1.33-10- 5s.
And the peak on the left corresponds to the second buch-
ing, where 7 dropped 5%, resulting in a lower vres.

t (10-5s)

Fig. 3d. Run 1: Time development of average Lorentz fac-
tor (i.e. per macro-particle) in two simulations, one with
N = 2 (top) and the other with N = 200 (bottom). The
N = 2 case reflects the behaviour of particles radiating
incoherently, with constant energy loss over time as com-
pared with the bunching case, where there is a steep drop
in energy (A7 = 50) of the beam particles between 1.0
and 1.8 -10-3 s. Between 2.4 «10-5 s and 2.8 «10-5 s an-
other drop in beam energy occurs, which corresponds to
a second bunching of the particles. This time, the beam
energy loss is less than for the first time, and the duration
is much shorter. The pulse power (Fig. 3b) reflects these
characterics where the first pulse is more powerful and has
a longer duration than the second pulse.

i/(100 Hz)

Fig. 4a. Spectra for Run 2 plotted over each other; we
have K = 5 (solid), 10 (dotted), 15 (short-dashed) and 20
(long-dashed). The resonance frequency shifts according
to (7).The bandwidth increases with increasing vres.

t (10-95) t (10-95)

Fig. 4b. Pulse power for Run 2 plotted for different K.
The maximum scales roughly as K-2.
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t (10-55)

Fig. 4c. Run 2: (Y,t)-plot for K = 5, 10, 15, 20 (labelling
as in Fig. 4a). Obviously, for all K, the beam particles
bunch twice (also, see Fig. 4b). corresponding to the max-
imum power, the beam energy loss is largest here for
K = 5.

i/(100 Hz)

Fig. 5a. Run 3: Spectrum at the end of the simulation for
different Aw = 100 m (solid), 50 m (dotted), 40 m (short-
dashed), 25 m (long-dashed). Spectral broadening is due
to more bunchings occuring during the simulation.

t (10-9 s) t (10-9 )

Fig. 5b. Pulse power for Run 3 plotted for different Aw
values. Maximum powers are of about the same order of
magnitude. Only the number of pulses differs for each run,
due to number of bunching times.
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t (10-55)

Fig. 5c. Run 3: The average Lorentz factor of the
macroparticles during their passage in the cavity for Aw =
100, 50, 40, 25 m (labelling as in Fig. 5a). The starting

time of the first bunching for each run is about 10 teff (6).

The energy beam loss after the first bunching is about 5%.
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i/(100 Hz)

Fig. 6a. Run 4: Spectrum for Bw = 0.2 (solid), 0.5 (dot-
ted), 0.8 (short-dashed), 0.9 (long-dashed).

S 10 12 -1 0 1
t (10”9 5) t (1079 s)

Fig. 6b. Pulse power for Run 4 plotted for different Rw.
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t (10-55)

Fig. 6c. Run 4: The average Lorentz factor versus the av-
erage distance z of the particles in simulations with chang-
ing Bw = 0.2 ,0.5, 0.8, 0.9 (labelling same as Fig. 6a). The
starting time of the first bunching is 10 teff.

i/(100 Hz)

Fig. 7a. Run 5: Spectra for (from top to bottom along
the left vertical axis) Bo = 10-3 T (solid), 10-2 T (dot-
ted), 0.0025 T (short-dashed), 0.050 T (long-dashed). For
Bo = 10-3 T, the spectrum shows the same properties
(central frequency and bandwidth) as in the case where
the background magnetic field is absent. For Bo = 10-2 T,
the central frequency shifts to 2 GHz, whereas the band-
width drops to 0.61 GHz.

10 1 1111111111111111121_ trrrrrrrrrrrraeeld
: B0=0.025 :: B0=0.050 :
8
» 6
0
2
10
b0=o0.00i :: b0=o0.0io :
8
6
4
L] 1
2 -
-2 -1 0 1 -22 -1 0 1
t (10”9 s) t (10"9 s)

Fig. 7b. Pulse power (logarithmic) for Run 5. The power
of the radiation becomes smaller for Bo = 0.025 and 0.05
T.
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t (10-55)

Fig. 7c. Run 5: The average Lorentz factor versus the av-
erage distance z of the particles in simulations with back-
ground magnetic field for Bo = 10-3,10-2,2.510-2,5.0 «
10-2 T (labelling as in Fig. 7a). The last case coincides
practically with the horizontal line 7 = 1000. Only for
Bo = 10-3 T and Bo = 10-2 T the beam particles show

FEL action.

i/(100 Hz)

Fig. 8a. Run 6: Spectrum (from top to bottom) for
n/«Gj* = 0.1 (solid), 0.2 (dotted), 0.3 (short-dashed) and
0.4 (long-dashed). The spectrum broadens as the number
density increases, as expected from Fig. 8c, which shows
single bunching for n/nGJ = 0.1, but multiple bunching
forn/nGJ > 0.1.

t (10-9 s) t (10-9 s)

Fig. 8b. Pulse power for Run 6 plotted for different num-
ber densities relative to nGJ*. As expected, the maximum
power scales as n2.
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t (10-5 ) i/(108 Hz)

Fig.8c. Run 6: From top to bottom: Average Lorentz Fig. 9a. Run 7: Spectrum for initial Lorentz factor of the
factor per particle, for number density of the bunch n = beam particles 7 = 1000 (solid), 500 (dottedQ), 250 (short-
0.1, 0.2, 0.3, 0.4 ncj* (labelling as in Fig. 8a). Clearly, dashed), 100 (long-dashed). The central frequency shift as
a small beam number density results in negligible losses,

and therefore, no coherent emission.
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Fig. 9b. Pulse power for Run 7 plotted.
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Fig. 9c. Run 7: The average Lorentz factor versus the av-
erage distance z of the particles in simulations with chang-

ing Lorentz factor.



