45 research outputs found

    Major ion chemistry and selected snow accumulation rates of snow cores along two transects in central Dronning Maud Land and Princess Elizabeth Land

    No full text
    This dataset includes basic information (location and depth) and major ion chemistry (Sodium, Chloride, Calcium, Nitrate) of snow cores from East Antarctic ice sheet. The snow cores were collected from two different regions - central Dronning Maud Land (cDML) and Princess Elizabeth Land (PEL) during the austral summer of 2008-09

    Multi-layer distribution of Black Carbon and Inorganic Ions in the Snow-packs of western Himalayas and Snow Albedo Forcing

    No full text
    The plausible impact of light-absorbing aerosols on snow darkening and subsequent retreating of glaciers is a global climatic concern. In this study, we present the characteristics of multi-layer distribution and effects of Black Carbon (BC) and inorganic ions in the snowpacks of Khardung (KG) and Phuche (PG) glaciers (> 5 km a.s.l.) in the western Himalayas. We observed significant vertical heterogeneity of BC in the snowpacks of KG (-42-428 ng g-1) and PG (-59 and 299 ng g-1), with higher concentrations in aged snow. Similar to BC, ions in the multi-layer snowpack also depicted prominent vertical heterogeneity with strong crustal influence (as indicated by abundant nssCa2+) in the aged snow layers of KG, which also possess a higher snow-melt rate as compared to PG. Among the other inorganic ions, the vertical profiles of nssSO42- and NO3- indicated elution and refreezing effects. The computation of the effective snow albedo for different snow-darkening and snow-physical processes vindicated the need of considering the multilayer model for the accurate quantification of effects of heterogeneous distributions of light absorbing aerosols (LAA) in the snowpacks. Following this, the multi-layer simulations of snow-albedo in the SNICAR model demonstrated the change in snow albedo by 2.5-9.0% for the amount of LAA observed in our study. This resulted in snow albedo forcing of 49.2 Wm-2 for PG, 30.8 Wm-2 for KG1 and 29.6 Wm-2 for KG2 for the typical snow-physical properties in the study region. Comprehensive data sets comprising physical, morphological and chemical properties of aerosols and snow are imperative to predict aerosol-induced snow darkening and the associated anomalous melting of snow/glacier over the Himalayan region.Peer reviewe

    Moisture Sources for Precipitation and Hydrograph Components of the Sutri Dhaka Glacier Basin, Western Himalayas

    No full text
    Himalayan glaciers are the major source of fresh water supply to the Himalayan Rivers, which support the livelihoods of more than a billion people living in the downstream region. However, in the face of recent climate change, these glaciers might be vulnerable, and thereby become a serious threat to the future fresh water reserve. Therefore, special attention is required in terms of understanding moisture sources for precipitation over the Himalayan glaciers and the hydrograph components of streams and rivers flowing from the glacierized region. We have carried out a systematic study in one of the benchmark glaciers, “Sutri Dhaka” of the Chandra Basin, in the western Himalayas, to understand its hydrograph components, based on stable water isotopes (δ18O and δ2H) and field-based ablation measurements. Further, to decipher moisture sources for precipitation and its variability in the study region, we have studied stable water isotopes in precipitation samples (rain and snow), and performed a back-trajectory analysis of the air parcel that brings moisture to this region. Our results show that the moisture source for precipitation over the study region is mainly derived from the Mediterranean regions (>70%) by Western Disturbances (WDs) during winter (October–May) and a minor contribution (<20%) from the Indian Summer Monsoon (ISM) during summer season (June–September). A three-component hydrograph separation based on δ18O and d-excess provides estimates of ice (65 ± 14%), snowpack (15 ± 9%) and fresh snow (20 ± 5%) contributions, respectively. Our field-based specific ablation measurements show that ice and snow melt contributions are 80 ± 16% and 20 ± 4%, respectively. The differences in hydrograph component estimates are apparently due to an unaccounted snow contribution ‘missing component’ from the valley slopes in field-based ablation measurements, whereas the isotope-based hydrograph separation method accounts for all the components, and provides a basin integrated estimate. Therefore, we suggest that for similar types of basins where contributions of rainfall and groundwater are minimal, and glaciers are often inaccessible for frequent field measurements/observations, the stable isotope-based method could significantly add to our ability to decipher moisture sources and estimate hydrograph components
    corecore