31 research outputs found

    Genetic deletion of α7 nicotinic acetylcholine receptors induces an age-dependent Alzheimer's disease-like pathology.

    Get PDF
    The accumulation of amyloid-beta peptide (Aβ) and the failure of cholinergic transmission are key players in Alzheimer's disease (AD). However, in the healthy brain, Aβ contributes to synaptic plasticity and memory acting through α7 subtype nicotinic acetylcholine receptors (α7nAChRs). Here, we hypothesized that the α7nAChR deletion blocks Aβ physiological function and promotes a compensatory increase in Aβ levels that, in turn, triggers an AD-like pathology. To validate this hypothesis, we studied the age-dependent phenotype of α7 knock out mice. We found that α7nAChR deletion caused an impairment of hippocampal synaptic plasticity and memory at 12 months of age, paralleled by an increase of Amyloid Precursor Protein expression and Aβ levels. This was accompanied by other classical AD features such as a hyperphosphorylation of tau at residues Ser 199, Ser 396, Thr 205, a decrease of GSK-3β at Ser 9, the presence of paired helical filaments and neurofibrillary tangles, neuronal loss and an increase of GFAP-positive astrocytes. Our findings suggest that α7nAChR malfunction might precede Aβ and tau pathology, offering a different perspective to interpret the failure of anti-Aβ therapies against AD and to find novel therapeutical approaches aimed at restoring α7nAChRs-mediated Aβ function at the synapse

    Knocking down metabotropic glutamate receptor 1 improves survival and disease progression in the SOD1G93A mouse model of amyotrophic lateral sclerosis

    Get PDF
    Abstract Amyotrophic lateral sclerosis (ALS) is a late-onset fatal neurodegenerative disease reflecting degeneration of upper and lower motoneurons (MNs). The cause of ALS and the mechanisms of neuronal death are still largely obscure, thus impairing the establishment of efficacious therapies. Glutamate (Glu)-mediated excitotoxicity plays a major role in MN degeneration in ALS. We recently demonstrated that the activation of Group I metabotropic Glu autoreceptors, belonging to both type 1 and type 5 receptors (mGluR1 and mGluR5), at glutamatergic spinal cord nerve terminals, produces excessive Glu release in mice over-expressing human superoxide-dismutase carrying the G93A point mutation (SOD1G93A), a widely used animal model of human ALS. To establish whether these receptors are implicated in ALS, we generated mice expressing half dosage of mGluR1 in the SOD1G93A background (SOD1G93AGrm1crv4/+), by crossing the SOD1G93A mutant mouse with the Grm1crv4/+ mouse, lacking mGluR1 because of a spontaneous recessive mutation. SOD1G93AGrm1crv4/+ mice showed prolonged survival probability, delayed pathology onset, slower disease progression and improved motor performances compared to SOD1G93A mice. These effects were associated to reduction of mGluR5 expression, enhanced number of MNs, decreased astrocyte and microglia activation, normalization of metallothionein and catalase mRNA expression, reduced mitochondrial damage, and decrease of abnormal Glu release in spinal cord of SOD1G93AGrm1crv4/+compared to SOD1G93A mice. These results demonstrate that a lower constitutive level of mGluR1 has a significant positive impact on mice with experimental ALS, thus providing the rationale for future pharmacological approaches to ALS by selectively blocking Group I metabotropic Glu receptors

    Hypoalbuminemia as a predictor of acute kidney injury during colistin treatment

    Get PDF
    This study aimed to assess the predictors of acute kidney injury (AKI) during colistin therapy in a cohort of patients with bloodstream infections (BSI) due to colistin-susceptible Gram-negative bacteria, focusing on the role of serum albumin levels. The study consisted of two parts: (1) a multicentre retrospective clinical study to assess the predictors of AKI during colistin therapy, defined according to the Kidney Disease: Improving Global Outcomes (KDIGO) criteria; and (2) bioinformatic and biochemical characterization of the possible interaction between human serum albumin and colistin. Among the 170 patients included in the study, 71 (42%), 35 (21%), and 11 (6%) developed KDIGO stage 1 (K1-AKI), KDIGO stage 2 (K2-AKI), and KDIGO stage 3 (K3-AKI), respectively. In multivariable analyses, serum albumin <2.5 g/dL was independently associated with K1-AKI (subdistribution hazard ratio [sHR] 1.85, 95% confidence interval [CI] 1.17\u20132.93, p = 0.009) and K2-AKI (sHR 2.37, 95% CI 1.15\u20134.87, p = 0.019). Bioinformatic and biochemical analyses provided additional information nurturing the discussion on how hypoalbuminemia favors development of AKI during colistin therapy. In conclusion, severe hypoalbuminemia independently predicted AKI during colistin therapy in a large cohort of patients with BSI due to colistin-susceptible Gram-negative bacteria. Further study is needed to clarify the underlying causal pathways

    A Reappraisal of GAT-1 Localization in Neocortex

    No full text
    gamma-Aminobutyric acid (GABA) transporter (GAT)-1, the major GABA transporter in the brain, plays a key role in modulating GABA signaling and is involved in the pathophysiology of several neuropsychiatric diseases, including epilepsy. The original description of GAT-1 as a neuronal transporter has guided the interpretation of the findings of all physiological, pharmacological, genetic, or clinical studies. However, evidence published in the past few years, some of which is briefly reviewed herein, does not seem to be consistent with a neurocentric view of GAT-1 function and calls for more detailed analysis of its localization. We therefore performed a thorough systematic assessment of GAT-1 localization in neocortex and subcortical white matter. In line with earlier work, we found that GAT-1 was robustly expressed in axon terminals forming symmetric synapses and in astrocytic processes, whereas its astrocytic expression was more diffuse than expected and, even more surprisingly, immature and mature oligodendrocytes and microglial cells also expressed the transporter. These data indicate that the era of "neuronal" and "glial" GABA transporters has finally come to a close and provide a wider perspective from which to view GABA-mediated physiological phenomena. In addition, given the well-known involvement of astrocytes, oligodendrocytes, and microglial cells in physiological as well as pathological conditions, the demonstration of functional GAT-1 in these cells is expected to provide greater insight into the phenomena occurring in the diseased brain as well as to prompt a reassessment of earlier findings

    Heterogeneity of Astrocytic and Neuronal GLT-1 at Cortical Excitatory Synapses, as Revealed by its Colocalization With Na+/K+-ATPase \u3b1 Isoforms

    No full text
    GLT-1, the major glutamate transporter, is expressed at perisynaptic astrocytic processes (PAP) and axon terminals (AxT). GLT-1 is coupled to Na+/K+-ATPase (NKA) \u3b11-3 isoforms, whose subcellular distribution and spatial organization in relationship to GLT-1 are largely unknown. Using several microscopy techniques, we showed that at excitatory synapses \u3b11 and \u3b13 are exclusively neuronal (mainly in dendrites and in some AxT), while \u3b12 is predominantly astrocytic. GLT-1 displayed a differential colocalization with \u3b11-3. GLT-1/\u3b12 and GLT-1/\u3b13 colocalization was higher in GLT-1 positive puncta partially (for GLT-1/\u3b12) or almost totally (for GLT-1/\u3b13) overlapping with VGLUT1 positive terminals than in nonoverlapping ones. GLT-1 colocalized with \u3b12 at PAP, and with \u3b11 and \u3b13 at AxT. GLT-1 and \u3b12 gold particles were 3c1.5-2 times closer than GLT-1/\u3b11 and GLT-1/\u3b13 particles. GLT-1/\u3b12 complexes (edge to edge interdistance of gold particles 6450 nm) concentrated at the perisynaptic region of PAP membranes, whereas neuronal GLT-1/\u3b11 and GLT-1/\u3b13 complexes were fewer and more uniformly distributed in AxT. These data unveil different composition of GLT-1 and \u3b1 subunits complexes in the glial and neuronal domains of excitatory synapses. The spatial organization of GLT-1/\u3b11-3 complexes suggests that GLT-1/NKA interaction is more efficient in astrocytes than in neurons, further supporting the dominant role of astrocytic GLT-1 in glutamate homeostasis
    corecore