21,351 research outputs found

    Superfluid and insulating phases of fermion mixtures in optical lattices

    Full text link
    The ground state phase diagram of fermion mixtures in optical lattices is analyzed as a function of interaction strength, fermion filling factor and tunneling parameters. In addition to standard superfluid, phase-separated or coexisting superfluid/excess-fermion phases found in homogeneous or harmonically trapped systems, fermions in optical lattices have several insulating phases, including a molecular Bose-Mott insulator (BMI), a Fermi-Pauli (band) insulator (FPI), a phase-separated BMI/FPI mixture or a Bose-Fermi checkerboard (BFC). The molecular BMI phase is the fermion mixture counterpart of the atomic BMI found in atomic Bose systems, the BFC or BMI/FPI phases exist in Bose-Fermi mixtures, and lastly the FPI phase is particular to the Fermi nature of the constituent atoms of the mixture.Comment: 4 pages with 3 figures (Published version

    Magnetoresistive Effects in Ferromagnet-Superconductor Multilayers

    Full text link
    We consider a nanoscale system consisting of Manganite-ferromagnet and Cuprate-superconductor multilayers in a spin valve configuration. The magnetization of the bottom Manganite-ferromagnet is pinned by a Manganite-antiferromagnet. The magnetization of the top Manganite-ferromagnet is coupled to the bottom one via indirect exchange through the superconducting layers. We study the behavior of the critical temperature and the magnetoresistance as a function of an externally applied parallel magnetic field, when the number of Cuprate-superconductor layers are changed. There are two typical behaviors in the case of a few monolayers of the Cuprates: a) For small magnetic fields, the critical temperature and the magnetoresistance change abruptly when the flipping field of the top Manganite-ferromagnet is reached. b) For large magnetic fields, the multilayered system re-enters the zero-resistance (superconducting) state after having become resistive (normal).Comment: 3 pages, 3 figures. 2004 Magnetism and Magnetic Materials Conferenc
    • …
    corecore