5 research outputs found

    Recovering What Matters: High Protein Recovery after Endotoxin Removal from LPS-Contaminated Formulations Using Novel Anti-Lipid A Antibody Microparticle Conjugates

    Get PDF
    Bioconjugation; Polystyrene particles; Supramolecular structuresBioconjugación; Partículas de poliestireno; Estructuras supramolecularesBioconjugació; Partícules de poliestirè; Estructures supramolecularsEndotoxins or lipopolysaccharides (LPS), found in the outer membrane of Gram-negative bacterial cell walls, can stimulate the human innate immune system, leading to life-threatening symptoms. Therefore, regulatory limits for endotoxin content apply to injectable pharmaceuticals, and excess LPS must be removed before commercialization. The majority of available endotoxin removal systems are based on the non-specific adsorption of LPS to charged and/or hydrophobic surfaces. Albeit effective to remove endotoxins, the lack of specificity can result in the unwanted loss of essential proteins from the pharmaceutical formulation. In this work, we developed microparticles conjugated to anti-Lipid A antibodies for selective endotoxin removal. Anti-Lipid A particles were characterized using flow cytometry and microscopy techniques. These particles exhibited a depletion capacity > 6 ×103 endotoxin units/mg particles from water, as determined with two independent methods (Limulus Amebocyte Lysate test and nanoparticle tracking analysis). Additionally, we compared these particles with a non-specific endotoxin removal system in a series of formulations of increasing complexity: bovine serum albumin in water < insulin in buffer < birch pollen extracts. We demonstrated that the specific anti-Lipid A particles show a higher protein recovery without compromising their endotoxin removal capacity. Consequently, we believe that the specificity layer integrated by the anti-Lipid A antibody could be advantageous to enhance product yield.The project leading to this application has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 812661, H2020-MSCA-ITN-2018-812661 (ENDONANO)

    Chitosan nanoparticles as delivery vehicle for antisense oligodeoxyribonucleotides

    No full text
    Em 1978, o trabalho realizado por Stephenson e Zamecnik demonstrou a capacidade de um oligonucleotídeo de impedir a expressão de uma proteína específica. Atualmente, duas tecnologias são mais utilizadas para este propósito: os oligodeoxiribonucleotídeos antisense e o RNA de interferência (siRNA), que se aproveitam da capacidade de anelação entre as fitas complementares. A maior diferença entre as duas técnicas é a maquinaria proteica recrutada, isso é, o complexo RISC atua no funcionamento do siRNA, e a protease RNase H atua na clivagem da fita de RNA quando hibridizada com DNA. Apesar da grande aplicabilidade destas tecnologias, tanto para doenças metabólicas quanto para canceres, o veículo de entrega e proteção dessas sequências é de fundamental importância, visto que a aplicação desses oligonucleotídeos livres está sujeita à rápida degradação e ineficiência. A modificação das bases é uma das estratégias para conferir maior estabilidade às sequências, porém estas tem sido relacionadas a um aumento da toxicidade. Nessa dissertação, a quitosana, um polissacarídeo catiônico é utilizado para síntese de nanopartículas e encapsulamento dos oligodeoxiribonucleotídeos antisense (ASO). Para isso, foram realizadas modificações na quitosana comercial como despolimerização, trimetilação ou conjugação com PEG, seguida da síntese das nanopartículas com a adição de tripolifosfato de sódio (TPP) pelo método de gelatinização ionotrópica. A estabilidade das nanopartículas foi medida em função do tempo, da variação de temperatura e da diferença de pH. Além disso, a toxicidade dessas nanopartículas foi analisada através da viabilidade celular em diferentes linhagens, NB-4, HepaRG, HTC e BHK-570. A expressão da proteína verde fluorescente (GFP) na célula NB-4 foi utilizada para avaliar a entrega do ASO desenhado, sendo sua fluorescência monitorada por microscopia confocal. Os resultados demonstram que as nanopartículas se mantiveram estáveis durante o período de tempo analisado, assim como com a temperatura variando de 22 a 45&deg;C e em pH ácido. Cada linhagem celular respondeu de forma diferente ao tratamento com as nanopartículas sem ASO, sendo a linhagem saudável BHK-570 com a maior resistência. Ademais, todas as células apresentaram viabilidade reduzida quando tratadas com concentrações na ordem de 1011 nanopartículas/mL a base de quitosana trimetilada. A fluorescência das células NB-4 quando tratada com as nanopartículas com ASO diminuiu consideravelmente nas 18 primeiras horas, seguida de um aumento após 42 horas. Dessa forma, pode-se concluir que as nanopartículas de quitosana propostas nessa dissertação apresentaram uma excelente alternativa para a entrega de material genético, principalmente para o trato gastro-intestinal, devido à sua estabilidade em pH ácido.The property of an oligonucleotide to interfere in the expression of a protein was observed in 1978 by Stephenson and Zamecnik. To perform such interference, there are today, two main techniques being explored: antisense oligodeoxyribonucleotides and interference RNA. In both cases, the particularity of their chemical structure is taken into account as soon as they can bind in a complementary manner to the messenger RNA and inhibit its translation. The great difference between these techniques is related to the proteases involved in the process, while for interference RNA the RISC machinery acts, for antisense oligodeoxyribonucleotides RNase H cleaves the RNA in the duplex DNA-RNA. Although these tools to edit the translation process are relevant to the treatment and even cure of metabolic disorders and cancers, it is still not effective when employed without a coating to protect the sequences before it reaches the destiny in vivo. Efforts have been made in developing modified bases to be more stable, but they show some toxicity. In this dissertation, chitosan, a natural cationic polyssacharide, is used to produce nanoparticles to protect the antisense oligodeoxyribonucleotide (ASO). For this reason, the commercial chitosan was modified, depolymerized, trimetilated or PEGlated and the nanoparticles were synthesized with sodium tripolyphosphate (TPP) by ionotropic gelation method. The stability along time, in different pHs and temperatures was assessed. The toxicity of nanoparticles without ASO was quantified by MTT tests in NB-4, HepaRG, HTC and BHK-570 cell lines. A green fluorescent protein (GFP) expressed by NB-4 cells was the target to evaluate the delivery efficiency of the ASO, and its fluorescence was measured by confocal microscopy. Results showed that nanoparticles were stable over time as well as in temperatures ranging from 22 to 45&deg;C and in acidic pH. Each cell line responded in a different manner to the treatment, with the health cell BHK-570 showing higher resistance. Furthermore, all of them presented lower viability when treated with trimetilated chitosan nanoparticles in the highest concentrations (ca 1011 nanoparticles/mL). NB-4 cells presented a decrease in fluorescence in 18 hours of treatment followed by an increase after 42 hours. We conclude that chitosan nanoparticles are a good alternative to the delivery of genetic material even more in the gastro intestinal tract due to its great stability in acid pH values

    DataSheet_1_Artificial Targets: a versatile cell-free platform to characterize CAR T cell function in vitro.docx

    No full text
    Cancer immunotherapies using chimeric antigen receptor (CAR) T cells have tremendous potential and proven clinical efficacy against a number of malignancies. Research and development are emerging to deepen the knowledge of CAR T cell efficacy and extend the therapeutic potential of this novel therapy. To this end, functional characterization of CAR T cells plays a central role in consecutive phases across fundamental research and therapeutic development, with increasing needs for standardization. The functional characterization of CAR T cells is typically achieved by assessing critical effector functions, following co-culture with cell lines expressing the target antigen. However, the use of target cell lines poses several limitations, including alterations in cell fitness, metabolic state or genetic drift due to handling and culturing of the cells, which would increase variabilities and could lead to inconsistent results. Moreover, the use of target cell lines can be work and time intensive, and introduce significant background due to the allogenic responses of T cells. To overcome these limitations, we developed a synthetic bead-based platform (“Artificial Targets”) to characterize CAR T cell function in vitro. These synthetic microparticles could specifically induce CAR T cell activation, as measured by CD69 and CD137 (4-1BB) upregulation. In addition, engagement with Artificial Targets resulted in induction of multiple effector functions of CAR T cells mimicking the response triggered by target cell lines including cytotoxic activity, as assessed by exposure of CD107a (LAMP-1), expression and secretion of cytokines, as well as cell proliferation. Importantly, in contrast to target cells, stimulation with Artificial Targets showed limited unspecific CAR T cell proliferation. Finally, Artificial Targets demonstrated flexibility to engage multiple costimulatory molecules that can synergistically enhance the CAR T cell function and represented a powerful tool for modulating CAR T cell responses. Collectively, our results show that Artificial Targets can specifically activate CAR T cells for essential effector functions that could significantly advance standardization of functional assessment of CAR T cells, from early development to clinical applications.</p

    Reproducibility of fluorescent expression from engineered biological constructs in E. coli

    No full text
    We present results of the first large-scale interlaboratory study carried out in synthetic biology, as part of the 2014 and 2015 International Genetically Engineered Machine (iGEM) competitions. Participants at 88 institutions around the world measured fluorescence from three engineered constitutive constructs in E. coli. Few participants were able to measure absolute fluorescence, so data was analyzed in terms of ratios. Precision was strongly related to fluorescent strength, ranging from 1.54-fold standard deviation for the ratio between strong promoters to 5.75-fold for the ratio between the strongest and weakest promoter, and while host strain did not affect expression ratios, choice of instrument did. This result shows that high quantitative precision and reproducibility of results is possible, while at the same time indicating areas needing improved laboratory practices.Peer reviewe
    corecore