402 research outputs found

    The two Josephson junction flux qubit with large tunneling amplitude

    Get PDF
    In this paper we discuss solid-state nanoelectronic realizations of Josephson flux qubits with large tunneling amplitude between the two macroscopic states. The latter can be controlled via the height and wells form of the potential barrier, which is determined by quantum-state engineering of the flux qubit circuit. The simplest circuit of the flux qubit is a superconducting loop interrupted by a Josephson nanoscale tunnel junction. The tunneling amplitude between two macroscopically different states can be essentially increased, by engineering of the qubit circuit, if tunnel junction is replaced by a ScS contact. However, only Josephson tunnel junctions are particularly suitable for large-scale integration circuits and quantum detectors with preset-day technology. To overcome this difficulty we consider here the flux qubit with high-level energy separation between "ground" and "excited" states, which consists of a superconducting loop with two low-capacitance Josephson tunnel junctions in series. We demonstrate that for real parameters of resonant superposition between the two macroscopic states the tunneling amplitude can reach values greater than 1K. Analytical results for the tunneling amplitude obtained within semiclassical approximation by instanton technique show good correlation with a numerical solution.Comment: 8 pages, 4 figure

    Star Formation in Nearby Isolated Galaxies

    Full text link
    We use the FUV fluxes measured with the GALEX to study the star formation properties of galaxies collected in the "Local Orphan Galaxies" catalog (LOG). Among 517 LOG galaxies having radial velocities V(LG) < 3500 km/s and Galactic latitudes |b|> 15 degr, 428 objects have been detected in FUV. We briefly discuss some scaling relations between the specific star formation rate (SSFR) and stellar mass, HI-mass, morphology, and surface brightness of galaxies situated in extremely low density regions of the Local Supercluster. Our sample is populated with predominantly late-type, gas-rich objects with the median morphological type of Sdm. Only 5% of LOG galaxies are classified as early types: E, S0, S0/a, however, they systematically differ from normal E and S0 galaxies by lower luminosity and presence of gas and dust. We find that almost all galaxies in our sample have their SSFR below 0.4 [Gyr^{-1}]. This limit is also true even for a sample of 260 active star-burst Markarian galaxies situated in the same volume. The existence of such a quasi-Eddington limit for galaxies seems to be a key factor which characterizes the transformation of gas into stars at the current epoch.Comment: 10 pages, 8 figures, 3 table
    corecore