19 research outputs found

    CREB Inhibits AP-2α Expression to Regulate the Malignant Phenotype of Melanoma

    Get PDF
    The loss of AP-2alpha and increased activity of cAMP-responsive element binding (CREB) protein are two hallmarks of malignant progression of cutaneous melanoma. However, the molecular mechanism responsible for the loss of AP-2alpha during melanoma progression remains unknown.Herein, we demonstrate that both inhibition of PKA-dependent CREB phosphorylation, as well as silencing of CREB expression by shRNA, restored AP-2alpha protein expression in two metastatic melanoma cell lines. Moreover, rescue of CREB expression in CREB-silenced cell lines downregulates expression of AP-2alpha. Loss of AP-2alpha expression in metastatic melanoma occurs via a dual mechanism involving binding of CREB to the AP-2alpha promoter and CREB-induced overexpression of another oncogenic transcription factor, E2F-1. Upregulation of AP-2alpha expression following CREB silencing increases endogenous p21(Waf1) and decreases MCAM/MUC18, both known to be downstream target genes of AP-2alpha involved in melanoma progression.Since AP-2alpha regulates several genes associated with the metastatic potential of melanoma including c-KIT, VEGF, PAR-1, MCAM/MUC18, and p21(Waf1), our data identified CREB as a major regulator of the malignant melanoma phenotype

    Emerging Roles of PAR-1 and PAFR in Melanoma Metastasis

    Get PDF
    Melanoma growth, angiogenesis and metastatic progression are strongly promoted by the inflammatory tumor microenvironment due to high levels of cytokine and chemokine secretion by the recruited inflammatory and stromal cells. In addition, platelets and molecular components of procoagulant pathways have been recently emerging as critical players of tumor growth and metastasis. In particular, thrombin, through the activity of its receptor protease-activated receptor-1 (PAR-1), regulates tumor cell adhesion to platelets and endothelial cells, stimulates tumor angiogenesis, and promotes tumor growth and metastasis. Notably, in many tumor types including melanoma, PAR-1 expression directly correlates with their metastatic phenotype and is directly responsible for the expression of interleukin-8, matrix metalloproteinase-2 (MMP-2), vascular endothelial growth factor, platelet-derived growth factor, and integrins. Another proinflammatory receptor–ligand pair, platelet-activating factor (PAF) and its receptor (PAFR), have been shown to act as important modulators of tumor cell adhesion to endothelial cells, angiogenesis, tumor growth and metastasis. PAF is a bioactive lipid produced by a variety of cells from membrane glycerophospholipids in the same reaction that releases arachidonic acid, and can be secreted by platelets, inflammatory cells, keratinocytes and endothelial cells. We have demonstrated that in metastatic melanoma cells, PAF stimulates the phosphorylation of cyclic adenosine monophosphate response element-binding protein (CREB) and activating transcription factor 1 (ATF-1), which results in overexpression of MMP-2 and membrane type 1-MMP (membrane type 1-MMP). Since only metastatic melanoma cells overexpress CREB/ATF-1, we propose that metastatic melanoma cells are better equipped than their non-metastatic counterparts to respond to PAF within the tumor microenvironment. The evidence supporting the hypothesis that the two G-protein coupled receptors, PAR-1 and PAFR, contribute to the acquisition of the metastatic phenotype of melanoma is presented and discussed

    Fate of UVB-induced p53 mutations in SKH-hr1 mouse skin after discontinuation of irradiation: relationship to skin cancer development

    No full text
    Chronic exposure to ultraviolet (UV) radiation causes skin cancer in humans and mice. We have previously shown that in hairless SKH-hr1 mice, UVB-induced p53 mutations arise very early, well before tumor development. In this study, we investigated whether discontinuation of UVB exposure before the onset of skin tumors results in the disappearance of p53 mutations in the skin of hairless SKH-hr1 mice. Irradiation of mice at a dose of 2.5 kJ/m2 three times a week for 8 weeks induced p53 mutations in the epidermal keratinocytes of 100% of the mice. UVB irradiation was discontinued after 8 weeks, but p53 mutations at most hotspot codons were still present even 22 weeks later. During that period, the percent of mice carrying p53(V154A/R155C), p53(H175H/H176Y), and p53R275C mutant alleles remained at or near 100%, whereas the percentage of mice with p53R270C mutation decreased by 45%. As expected, discontinuation of UVB after 8 weeks resulted in a delay in tumor development. A 100% of tumors carried p53(V154A/R155C) mutant alleles, 76% carried p53(H175H/H176Y) mutants, and 24 and 19% carried p53R270C and p53R275C mutants, respectively. These results suggest that different UVB-induced p53 mutants may provide different survival advantages to keratinocytes in the absence of further UVB exposure and that skin cancer development can be delayed but not prevented by avoidance of further exposure to UVB radiation
    corecore