919 research outputs found

    Modulation of gyrosynchrotron emission in solar and stellar flares by slow magnetoacoustic oscillations

    Get PDF
    Gyrosynchrotron emission generated by non-thermal electrons in solar and stellar coronal flares can be efficiently modulated by slow magnetoacoustic oscillations in the flaring loops. The modulation mechanism is based upon perturbation of the efficiency in the Razin suppression of optically thin gyrosynchrotron emission. Modulation of the emission is in anti-phase with the density perturbation in the slow wave. The observed emission modulation depth can be up to an order of magnitude higher than the slow wave amplitude. This effect is more pronounced at lower frequencies. Observations with spatial resolution, together with analysis of the modulation frequency, are shown to be sufficient for providing the information needed to identify the mode

    Multi-wavelength spatially resolved analysis of quasi-periodic pulsations in a solar flare

    Get PDF
    Aims. We aim to perform a spatially resolved analysis of a quasi-periodic pulsation event from 8th May 1998 using microwave data from the Nobeyama Radioheliograph and Radiopolarimeter, and X-ray data from the Yohkoh satellite. Methods. Time spectra of the signals integrated over the emission source are constructed with the use of the Lomb-Scargle periodogram method, revealing the presence of a pronounced 16 s periodicity. The Pixon image reconstruction algorithm and Hanaoka algorithm are used to reconstruct images from the hard X-ray data from Yohkoh/HXT and Nobeyama Radioheliograph respectively. The phase relationship of the microwave emission was analysed with the use of cross-correlation techniques. Results. The flaring loop was resolved in the microwave band. The hard X-ray sources are found to be located near the footpoint and at the loop apex determined by the soft X-ray image. The apex source is much fainter than footpoint one. In microwave, all parts of the loop are seen to oscillate with the same period and almost in phase. It was not possible to determine the spatial structure of the oscillation in the hard X-ray band. The period and the coherent spatial structure of the oscillation are indicative of the presence of either an MHD sausage mode or a periodic regime of magnetic reconnectio

    Spatially resolved microwave pulsations of a flare loop

    Get PDF
    A microwave burst with quasi-periodic pulsations was studied with high spatial resolution using observations with the Nobeyama Radioheliograph (NoRH). We found that the time profiles of the microwave emission at 17 and 34 GHz exhibit quasi-periodic (with two well defined periods P 1 = 14–17 s and P 2 = 8–11 s) variations of the intensity at different parts of an observed flaring loop. Detailed Fourier analysis shows the P 1 spectral component to be dominant at the top, while the P 2 one near the feet of the loop. The 14–17 s pulsations are synchronous at the top and in both legs of the loop. The 8–11 s pulsations at the legs are well correlated with each other but the correlation is not so obvious with the pulsations at the loop top. For this P 2 spectral component, a definite phase shift, P 2 /4 ≈ 2.2 s, between pulsations in the northern leg and loop top parts of the loop have been found. The length of the flaring loop is estimated as L = 25 Mm (≈34 ) and its average width at half intensity at 34 GHz as about 6 Mm (≈8 ). Microwave diagnostics shows the loop to be filled with a dense plasma with the number density n 0 ≈ 10 11 cm −3, penetrated by the magnetic field changing from B 0 ≈ 100 G near the loop top up to B 0 ≈ 200 G near the north footpoint. A comparative analysis of different MHD modes of the loop demonstrates the possibility of the simultaneous existence of two modes of oscillations in the loop: the global sausage mode, with the period P 1 = 14–17 s and the nodes at the footpoints, and a higher harmonics mode (possibly with the radial wave number l > 1), with P 2 = 8–11 s

    Tetra-AML: Automatic Machine Learning via Tensor Networks

    Full text link
    Neural networks have revolutionized many aspects of society but in the era of huge models with billions of parameters, optimizing and deploying them for commercial applications can require significant computational and financial resources. To address these challenges, we introduce the Tetra-AML toolbox, which automates neural architecture search and hyperparameter optimization via a custom-developed black-box Tensor train Optimization algorithm, TetraOpt. The toolbox also provides model compression through quantization and pruning, augmented by compression using tensor networks. Here, we analyze a unified benchmark for optimizing neural networks in computer vision tasks and show the superior performance of our approach compared to Bayesian optimization on the CIFAR-10 dataset. We also demonstrate the compression of ResNet-18 neural networks, where we use 14.5 times less memory while losing just 3.2% of accuracy. The presented framework is generic, not limited by computer vision problems, supports hardware acceleration (such as with GPUs and TPUs) and can be further extended to quantum hardware and to hybrid quantum machine learning models

    Multidimensional integrable vacuum cosmology with two curvatures

    Get PDF
    The vacuum cosmological model on the manifold R×M1××MnR \times M_1 \times \ldots \times M_n describing the evolution of nn Einstein spaces of non-zero curvatures is considered. For n=2n = 2 the Einstein equations are reduced to the Abel (ordinary differential) equation and solved, when (N1=(N_1 = dim M1,N2= M_1, N_2 = dimM2)=(6,3),(5,5),(8,2) M_2) = (6,3), (5,5), (8,2). The Kasner-like behaviour of the solutions near the singularity ts+0t_s \to +0 is considered (tst_s is synchronous time). The exceptional ("Milne-type") solutions are obtained for arbitrary nn. For n=2n=2 these solutions are attractors for other ones, when ts+t_s \to + \infty. For dim M=10,11 M = 10, 11 and 3n53 \leq n \leq 5 certain two-parametric families of solutions are obtained from n=2n=2 ones using "curvature-splitting" trick. In the case n=2n=2, (N1,N2)=(6,3)(N_1, N_2)= (6,3) a family of non-singular solutions with the topology R7×M2R^7 \times M_2 is found.Comment: 21 pages, LaTex. 5 figures are available upon request (hard copy). Submitted to Classical and Quantum Gravit

    Chemical analysis of aerosol in the Venusian cloud layer by reaction gas chromatography on board the Vega landers

    Get PDF
    The experiment on sulfuric acid aerosol determination in the Venusian cloud layer on board the Vega landers is described. An average content of sulfuric acid of approximately 1 mg/cu m was found for the samples taken from the atmosphere at heights from 63 to 48 km and analyzed with the SIGMA-3 chromatograph. Sulfur dioxide (SO2) was revealed in the gaseous sample at the height of 48 km. From the experimental results and blank run measurements, a suggestion is made that the Venusian cloud layer aerosol consists of more complicated particles than the sulfuric acid water solution does

    Pion pole contribution to hadronic light-by-light scattering and muon anomalous magnetic moment

    Get PDF
    We derive an analytic result for the pion pole contribution to the light-by-light scattering correction to the anomalous magnetic moment of the muon, aμ=(gμ2)/2a_\mu = (g_\mu-2)/2. Using the vector meson dominance model (VMD) for the pion transition form factor, we obtain aμLBL,π0=+56×1011a_\mu^{{\rm LBL},\pi^0} = +56 \times 10^{-11}.Comment: 4 pages, revte

    Combinatorics of BB-orbits and Bruhat--Chevalley order on involutions

    Full text link
    Let BB be the group of invertible upper-triangular complex n×nn\times n matrices, u\mathfrak{u} the space of upper-triangular complex matrices with zeroes on the diagonal and u\mathfrak{u}^* its dual space. The group BB acts on u\mathfrak{u}^* by (g.f)(x)=f(gxg1)(g.f)(x)=f(gxg^{-1}), gBg\in B, fuf\in\mathfrak{u}^*, xux\in\mathfrak{u}. To each involution σ\sigma in SnS_n, the symmetric group on nn letters, one can assign the BB-orbit Ωσu\Omega_{\sigma}\in\mathfrak{u}^*. We present a combinatorial description of the partial order on the set of involutions induced by the orbit closures. The answer is given in terms of rook placements and is dual to A. Melnikov's results on BB-orbits on u\mathfrak{u}. Using results of F. Incitti, we also prove that this partial order coincides with the restriction of the Bruhat--Chevalley order to the set of involutions.Comment: 27 page
    corecore