1,219 research outputs found

    Models of G time variations in diverse dimensions

    Full text link
    A review of different cosmological models in diverse dimensions leading to a relatively small time variation of the effective gravitational constant G is presented. Among them: 4-dimensional general scalar-tensor model, multidimensional vacuum model with two curved Einstein spaces, multidimensional model with multicomponent anisotropic "perfect fluid", S-brane model with scalar fields and two form field etc. It is shown that there exist different possible ways of explanation of relatively small time variation of the effective gravitational constant G compatible with present cosmological data (e.g. acceleration): 4-dimensional scalar-tensor theories or multidimensional cosmological models with different matter sources. The experimental bounds on G-dot may be satisfied ether in some restricted interval or for all allowed values of the synchronous time variable.Comment: 27 pages, Late

    On Unitary Evolution of a Massless Scalar Field In A Schwarzschild Background: Hawking Radiation and the Information Paradox

    Full text link
    We develop a Hamiltonian formalism which can be used to discuss the physics of a massless scalar field in a gravitational background of a Schwarzschild black hole. Using this formalism we show that the time evolution of the system is unitary and yet all known results such as the existence of Hawking radiation can be readily understood. We then point out that the Hamiltonian formalism leads to interesting observations about black hole entropy and the information paradox.Comment: 45 pages, revte

    Many-body excitations in tunneling current spectra of a few-electron quantum dot

    Full text link
    Inherent asymmetry in the tunneling barriers of few-electron quantum dots induces intrinsically different tunneling currents for forward and reverse source-drain biases in the non-linear transport regime. Here we show that in addition to spin selection rules, overlap matrix elements between many-body states are crucial for the correct description of tunneling transmission through quantum dots at large magnetic fields. Signatures of excited (N-1)-electron states in the transport process through the N-electron system are clearly identified in the measured transconductances. Our analysis clearly confirms the validity of single-electron quantum transport theory in quantum dots.Comment: 5 pages, 2 figure

    Magneto-optical properties of Au upon the injection of hot spin-polarized electrons across Fe/Au(001) interfaces

    Full text link
    We demonstrate a novel method for the excitation of sizable magneto-optical effects in Au by means of the laser-induced injection of hot spin-polarized electrons in Au/Fe/MgO(001) heterostructures. It is based on the energy- and spin-dependent electron transmittance of Fe/Au interface which acts as a spin filter for non-thermalized electrons optically excited in Fe. We show that after crossing the interface, majority electrons propagate through the Au layer with the velocity on the order of 1 nm/fs (close to the Fermi velocity) and the decay length on the order of 100 nm. Featuring ultrafast functionality and requiring no strong external magnetic fields, spin injection results in a distinct magneto-optical response of Au. We develop a formalism based on the phase of the transient complex MOKE response and demonstrate its robustness in a plethora of experimental and theoretical MOKE studies on Au, including our ab initio calculations. Our work introduces a flexible tool to manipulate magneto-optical properties of metals on the femtosecond timescale that holds high potential for active magneto-photonics, plasmonics, and spintronics

    On Possible Measurement of Gravitational Interaction Parameters on Board a Satellite

    Full text link
    The recently suggested SEE (Satellite Energy Exchange) method of measuring the gravitational constant GG, possible equivalence principle violation (measured by the E\"{o}tv\"{o}s parameter η\eta) and the hypothetic 5th force parameters α\alpha and λ\lambda on board a drag-free Earth's satellite is discussed and further developed. Various particle trajectories near a heavy ball are numerically simulated. Some basic sources of error are analysed. The GG measurement procedure is modelled by noise insertion to a ``true'' trajectory. It is concluded that the present knowledge of G,αG, \alpha (for λ1\lambda \geq 1 m) and η\eta can be improved by at least two orders of magnitude.Comment: (only two misprints on title page) 7 page

    On the class SI of J-contractive functions intertwining solutions of linear differential equations

    Get PDF
    In the PhD thesis of the second author under the supervision of the third author was defined the class SI of J-contractive functions, depending on a parameter and arising as transfer functions of overdetermined conservative 2D systems invariant in one direction. In this paper we extend and solve in the class SI, a number of problems originally set for the class SC of functions contractive in the open right-half plane, and unitary on the imaginary line with respect to some preassigned signature matrix J. The problems we consider include the Schur algorithm, the partial realization problem and the Nevanlinna-Pick interpolation problem. The arguments rely on a correspondence between elements in a given subclass of SI and elements in SC. Another important tool in the arguments is a new result pertaining to the classical tangential Schur algorithm.Comment: 46 page

    Electromagnetic and corpuscular emission from the solar flare of 1991 June 15: Continuous acceleraton of relativistic particles

    Get PDF
    Data on X-,γ-ray, optical and radio emission from the 1991 June 15 solar flare are considered. We have calculated the spectrum of protons that producesγ-rays during the gradual phase of the flare. The primary proton spectrum can be described as a Bessel-function-type up to 0.8 GeV and a power law with the spectral index ≈3 from 0.8 up to 10 GeV or above. We have also analyzed data on energetic particles near the Earth. Their spectrum differed from that of primary protons producingγ-ray line emission. In the gradual phase of the flare additional pulses of energy release occurred and the time profiles of cm-radio emission andγ-rays in the 0.8–10 MeV energy band and above 50 MeV coincided. A continuous and simultaneous stochastic acceleration of the protons and relativistic electrons at the gradual phase of the flare is considered as a natural explanation of the data

    Spin configurations in circular and rectangular vertical quantum dots in a magnetic field: Three-dimensional self-consistent simulation

    Full text link
    The magnetic field dependence of the electronic properties of \textit{real} single vertical quantum dots in circular and rectangular mesas is investigated within a full three-dimensional multiscale self-consistent approach without any {\it \'a priori} assumptions about the shape and strength of the confinement potential. The calculated zero field electron addition energies are in good agreement with available experimental data for both mesa geometries. Charging diagrams in a magnetic field for number of electrons up to five are also computed. Consistent with the experimental data, we found that the charging curves for the rectangular mesa dot in a magnetic field are flatter and exhibit less features than for a circular mesa dot. Evolution of the singlet-triplet energy separation in the two electron system for both dot geometries in magnetic field was also investigated. In the limit of large field, beyond the singlet-triplet transition, the singlet-triplet energy difference continues to become more negative in a circular mesa dot without any saturation within the range of considered magnetic fields whilst it is predicted to asymptotically approach zero for the rectangular mesa dot. This different behavior is attributed to the symmetry "breaking" that occurs in the singlet wave-functions in the rectangular mesa dot but not in the circular one.Comment: 12 pages, 8 gifure
    corecore