550 research outputs found

    Modeling the Field Emission Current Fluctuation in Carbon Nanotube Thin Films

    Full text link
    Owing to their distinct properties, carbon nanotubes (CNTs) have emerged as promising candidate for field emission devices. It has been found experimentally that the results related to the field emission performance show variability. The design of an efficient field emitting device requires the analysis of the variabilities with a systematic and multiphysics based modeling approach. In this paper, we develop a model of randomly oriented CNTs in a thin film by coupling the field emission phenomena, the electron-phonon transport and the mechanics of single isolated CNT. A computational scheme is developed by which the states of CNTs are updated in time incremental manner. The device current is calculated by using Fowler-Nordheim equation for field emission to study the performance at the device scale.Comment: 4 pages, 5 figure

    Oscillation of solar radio emission at coronal acoustic cut-off frequency

    Full text link
    Recent SECCHI COR2 observations on board STEREO-A spacecraft have detected density structures at a distance of 2.5--15~R propagating with periodicity of about 90~minutes. The observations show that the density structures probably formed in the lower corona. We used the large Ukrainian radio telescope URAN-2 to observe type IV radio bursts in the frequency range of 8--32~MHz during the time interval of 08:15--11:00~UT on August 1, 2011. Radio emission in this frequency range originated at the distance of 1.5--2.5 R according to the Baumbach-Allen density model of the solar corona. Morlet wavelet analysis showed the periodicity of 80~min in radio emission intensity at all frequencies, which demonstrates that there are quasi-periodic variations of coronal density at all heights. The observed periodicity corresponds to the acoustic cut-off frequency of stratified corona at a temperature of 1~MK. We suggest that continuous perturbations of the coronal base in the form of jets/explosive events generate acoustic pulses, which propagate upwards and leave the wake behind oscillating at the coronal cut-off frequency. This wake may transform into recurrent shocks due to the density decrease with height, which leads to the observed periodicity in the radio emission. The recurrent shocks may trigger quasi-periodic magnetic reconnection in helmet streamers, where the opposite field lines merge and consequently may generate periodic density structures observed in the solar wind.Comment: 10 pages, 6 figures, accepted in A&

    Radio seismology of the outer solar corona

    Full text link
    Observed oscillations of coronal loops in EUV lines have been successfully used to estimate plasma parameters in the inner corona (< 0.2 R_0, where R_0 is the solar radius). However, coronal seismology in EUV lines fails for higher altitudes because of rapid decrease in line intensity. We aim to use radio observations to estimate the plasma parameters of the outer solar corona (> 0.2 R_0). We use the large Ukrainian radio telescope URAN-2 to observe type IV radio burst at the frequency range of 8-32 MHz during the time interval of 09:50-12:30 UT in April 14, 2011. The burst was connected to C2.3 flare, which occurred in AR 11190 during 09:38-09:49 UT. The dynamic spectrum of radio emission shows clear quasi-periodic variations in the emission intensity at almost all frequencies. Wavelet analysis at four different frequencies (29 MHz, 25 MHz, 22 MHz and 14 MHz) shows the quasi-periodic variation of emission intensity with periods of 34 min and 23 min. The periodic variations can be explained by the first and second harmonics of vertical kink oscillation of transequatorial coronal loops, which were excited by the same flare. The apex of transequatorial loops may reach up to 1.2 R_0 altitude. We derive and solve the dispersion relation of trapped MHD oscillations in a longitudinally inhomogeneous magnetic slab. The analysis shows that a thin (with width to length ratio of 0.1), dense (with the ratio of internal and external densities of > 20) magnetic slab with weak longitudinal inhomogeneity may trap the observed oscillations. Seismologically estimated Alfv\'en speed inside the loop at the height of 1 R_0 is 1000 km/s. Then the magnetic field strength at this height is estimated as 0.9 G. Extrapolation of magnetic field strength to the inner corona gives 10 G at the height of 0.1 R_0.Comment: 12 pages, 10 figures, Accepted in A&

    Interventions for improving recovery from work

    Get PDF
    ObjectivesThis is a protocol for a Cochrane Review (intervention). The objectives are as follows:To compare the effectiveness of different individual interventions in recovery from work.info:eu-repo/semantics/publishedVersio

    Tangling clustering of inertial particles in stably stratified turbulence

    Full text link
    We have predicted theoretically and detected in laboratory experiments a new type of particle clustering (tangling clustering of inertial particles) in a stably stratified turbulence with imposed mean vertical temperature gradient. In this stratified turbulence a spatial distribution of the mean particle number density is nonuniform due to the phenomenon of turbulent thermal diffusion, that results in formation of a gradient of the mean particle number density, \nabla N, and generation of fluctuations of the particle number density by tangling of the gradient, \nabla N, by velocity fluctuations. The mean temperature gradient, \nabla T, produces the temperature fluctuations by tangling of the gradient, \nabla T, by velocity fluctuations. These fluctuations increase the rate of formation of the particle clusters in small scales. In the laboratory stratified turbulence this tangling clustering is much more effective than a pure inertial clustering that has been observed in isothermal turbulence. In particular, in our experiments in oscillating grid isothermal turbulence in air without imposed mean temperature gradient, the inertial clustering is very weak for solid particles with the diameter 10 microns and Reynolds numbers Re =250. Our theoretical predictions are in a good agreement with the obtained experimental results.Comment: 16 pages, 4 figures, REVTEX4, revised versio

    Peculiar Features of the Velocity Field of OB Associations and the Spiral Structure of the Galaxy

    Full text link
    Some of the peculiar features of the periodic velocity-field structure for OB associations can be explained by using the model of Roberts and Hausman (1984), in which the behavior of a system of dense clouds is considered in a perturbed potential. The absence of statistically significant variations in the azimuthal velocity across the Carina arm, probably, results from its sharp increase behind the shock front, which is easily blurred by distance errors. The existence of a shock wave in the spiral arms and, at the same time, the virtually free motion of OB associations in epicycles can be reconciled in the model of particle clouds with a mean free path of 0.2-2 kpc. The velocity field of OB associations exhibits two appreciable nonrandom deviations from an ideal spiral pattern: a 0.5-kpc displacement of the Cygnus- and Carina-arm fragments from one another and a weakening of the Perseus arm in quadrant III. However, the identified fragments of the Carina, Cygnus, and Perseus arms do not belong to any of the known types of spurs.Comment: 14 pages, 3 postscript figures, to be published in Astronomy Letter

    Changes in composition and pore space of sand rocks in the oil water contact zone (section YU[1] {3-4}, Klyuchevskaya area, Tomsk region)

    Get PDF
    The article provides an analysis of specific features in changes of rocks in the oil water contact zone. The object of study is the formation YU[1] {3-4} (J[3]o[1]) of Klyuchevskaya oil deposit (West Siberian oil-gas province, Tomsk region). The research data allow the authors to determine vertical zoning of the surface structure and identify the following zones: oil saturation (weak alteration), bitumen-content dissolution, non-bitumen-content dissolution, cementation, including rocks not affected by hydrocarbon deposit. The rocks under investigation are characterized by different changes in composition, pore space, as well as reservoir filtration and volumetric parameters. Detection of irregularity in distribution of void- pore space in oil-water contact zones is of great practical importance. It helps to avoid the errors in differential pressure drawdown and explain the origin of low-resistivity collectors

    Метаболічні ефекти карнітину, роль у розвитку патологій та перспективи клінічного застосування (огляд)

    Get PDF
    In the literature review the generalized data about the metabolic role of carnitine in the biochemical processes, the consequences of carnitine deficiency and its contribution to the pathogenesis of the development pathologies, prospects for the use of carnitine in clinical practice.В обзоре литературы приведены обобщенные данные о метаболической роли карнитина в биохимических процессах, проходящих в организме, последствия карнитиновой недостаточности и ее вклада в патогенез развития патологий различного генеза, перспектив применения препаратов карнитина в клинической практике.У огляді літератури наведені узагальнені дані щодо метаболічної ролі карнітину у біохімічних процесах, що проходять в організмі, наслідки карнітинової недостатності та її внеску у патогенез розвитку патологій різного генезу, перспектив застосування препаратів карнітину у клінічній практиці.
    corecore