40 research outputs found

    The Relation Between Quasar and Merging Galaxy Luminosity Functions and the Merger-Induced Star Formation Rate of the Universe

    Full text link
    Using a model for self-regulated growth of black holes (BHs) in mergers involving gas-rich galaxies, we study the relationship between quasars and the population of merging galaxies and predict the merger-induced star formation rate density of the Universe. Mergers drive nuclear gas inflows, fueling starbursts and 'buried quasars' until accretion feedback expels the gas, rendering a briefly visible optical quasar. Star formation is shut down and accretion declines, leaving a passively evolving remnant with properties typical of red, elliptical galaxies. Based on evolution of these events in our simulations, we demonstrate that the observed statistics of merger rates, luminosity functions (LFs) and mass functions, SFR distributions, specific SFRs, quasar and quasar host galaxy LFs, and elliptical/red galaxy LFs are self-consistent and follow from one another as predicted by the merger hypothesis. We use our simulations to de-convolve both quasar and merging galaxy LFs to determine the birthrate of black holes of a given final mass and merger rates as a function of stellar mass. We use this to predict the merging galaxy LF in several observed wavebands, color-magnitude relations, mass functions, absolute and specific SFR distributions and SFR density, and quasar host galaxy LFs, as a function of redshift from z=0-6. We invert this and predict e.g. quasar LFs from observed merger LFs or SFR distributions. Our results agree well with observations, but idealized models of quasar lightcurves are ruled out by comparison of merger and quasar observations at >99.9% confidence. Using only observations of quasars, we estimate the contribution of mergers to the SFR density of the Universe even to high redshifts z~4.Comment: 26 pages, 15 figures, matches version accepted to Ap

    Climate Indicators for Agriculture

    Get PDF
    The Climate Indicators for Agriculture report presents 20 indicators of climate change, carefully selected across multiple agricultural production types and food system elements in the United States. Together, they represent an overall view of how climate change is influencing U.S. agriculture and food systems. Individually, they provide useful information to support management decisions for a variety of crop and livestock production systems. The report includes multiple categories of indicators, including physical indicators (e.g., temperature, precipitation), crop and livestock (e.g., animal heat stress), biological indicators (e.g., pests), phenological indicators (e.g. seasonality), and socioeconomic indicators (e.g., total factor productivity)

    Genetic Biocontrol for Invasive Species

    Get PDF
    Invasive species are increasingly affecting agriculture, food, fisheries, and forestry resources throughout the world. As a result of global trade, invasive species are often introduced into new environments where they become established and cause harm to human health, agriculture, and the environment. Prevention of new introductions is a high priority for addressing the harm caused by invasive species, but unfortunately efforts to prevent new introductions do not address the economic harm that is presently manifested where invasive species have already become established. Genetic biocontrol can be defined as the release of organisms with genetic methods designed to disrupt the reproduction of invasive populations. While these methods offer the potential to control or even eradicate invasive species, there is a need to ensure that genetic biocontrol methods can be deployed in a way that minimizes potential harm to the environment. This review provides an overview of the state of genetic biocontrol, focusing on several approaches that were the subject of presentations at the Genetic Biocontrol for Invasive Species Workshop in Tarragona, Spain, March 31st, 2019, a workshop sponsored by the OECD’s Co-operative Research Program on Biological Resource Management for Sustainable Agricultural Systems. The review considers four different approaches to genetic biocontrol for invasive species; sterile-release, YY Males, Trojan Female Technique, and gene drive. The different approaches will be compared with respect to the efficiency each affords as a genetic biocontrol tool, the practical utility and cost/benefits associated with implementation of the approach, and the regulatory considerations that will need to be addressed for each. The opinions expressed and arguments employed in this publication are the sole responsibility of the authors and do not necessarily reflect those of the OECD or of the governments of its Member countries

    Climate Indicators for Agriculture

    No full text
    The Climate Indicators for Agriculture report presents 20 indicators of climate change, carefully selected across multiple agricultural production types and food system elements in the United States. Together, they represent an overall view of how climate change is influencing U.S. agriculture and food systems. Individually, they provide useful information to support management decisions for a variety of crop and livestock production systems. The report includes multiple categories of indicators, including physical indicators (e.g., temperature, precipitation), crop and livestock (e.g., animal heat stress), biological indicators (e.g., pests), phenological indicators (e.g. seasonality), and socioeconomic indicators (e.g., total factor productivity)

    Genetic Biocontrol for Invasive Species

    Get PDF
    Invasive species are increasingly affecting agriculture, food, fisheries, and forestry resources throughout the world. As a result of global trade, invasive species are often introduced into new environments where they become established and cause harm to human health, agriculture, and the environment. Prevention of new introductions is a high priority for addressing the harm caused by invasive species, but unfortunately efforts to prevent new introductions do not address the economic harm that is presently manifested where invasive species have already become established. Genetic biocontrol can be defined as the release of organisms with genetic methods designed to disrupt the reproduction of invasive populations. While these methods offer the potential to control or even eradicate invasive species, there is a need to ensure that genetic biocontrol methods can be deployed in a way that minimizes potential harm to the environment. This review provides an overview of the state of genetic biocontrol, focusing on several approaches that were the subject of presentations at the Genetic Biocontrol for Invasive Species Workshop in Tarragona, Spain, March 31st, 2019, a workshop sponsored by the OECD’s Co-operative Research Program on Biological Resource Management for Sustainable Agricultural Systems. The review considers four different approaches to genetic biocontrol for invasive species; sterile-release, YY Males, Trojan Female Technique, and gene drive. The different approaches will be compared with respect to the efficiency each affords as a genetic biocontrol tool, the practical utility and cost/benefits associated with implementation of the approach, and the regulatory considerations that will need to be addressed for each. The opinions expressed and arguments employed in this publication are the sole responsibility of the authors and do not necessarily reflect those of the OECD or of the governments of its Member countries

    Climate Indicators for Agriculture

    No full text
    The Climate Indicators for Agriculture report presents 20 indicators of climate change, carefully selected across multiple agricultural production types and food system elements in the United States. Together, they represent an overall view of how climate change is influencing U.S. agriculture and food systems. Individually, they provide useful information to support management decisions for a variety of crop and livestock production systems. The report includes multiple categories of indicators, including physical indicators (e.g., temperature, precipitation), crop and livestock (e.g., animal heat stress), biological indicators (e.g., pests), phenological indicators (e.g. seasonality), and socioeconomic indicators (e.g., total factor productivity).This report is from Walsh, M. K., P. Backlund, L. Buja, A. DeGaetano, R. Melnick, L. Prokopy, E. Takle, D. Todey, L. Ziska. 2020. Climate Indicators for Agriculture. USDA Technical Bulletin 1953. Washington, DC. 70 pages. DOI:10.32747/2020.7201760.ch.</p
    corecore