5,369 research outputs found

    Wave Scattering through Classically Chaotic Cavities in the Presence of Absorption: An Information-Theoretic Model

    Full text link
    We propose an information-theoretic model for the transport of waves through a chaotic cavity in the presence of absorption. The entropy of the S-matrix statistical distribution is maximized, with the constraint =αn =\alpha n: n is the dimensionality of S, and 0≤α≤1,α=0(1)0\leq \alpha \leq 1, \alpha =0(1) meaning complete (no) absorption. For strong absorption our result agrees with a number of analytical calculations already given in the literature. In that limit, the distribution of the individual (angular) transmission and reflection coefficients becomes exponential -Rayleigh statistics- even for n=1. For n≫1n\gg 1 Rayleigh statistics is attained even with no absorption; here we extend the study to α<1\alpha <1. The model is compared with random-matrix-theory numerical simulations: it describes the problem very well for strong absorption, but fails for moderate and weak absorptions. Thus, in the latter regime, some important physical constraint is missing in the construction of the model.Comment: 4 pages, latex, 3 ps figure

    Exact Solution for the Distribution of Transmission Eigenvalues in a Disordered Wire and Comparison with Random-Matrix Theory

    Get PDF
    An exact solution is presented of the Fokker-Planck equation which governs the evolution of an ensemble of disordered metal wires of increasing length, in a magnetic field. By a mapping onto a free-fermion problem, the complete probability distribution function of the transmission eigenvalues is obtained. The logarithmic eigenvalue repulsion of random-matrix theory is shown to break down for transmission eigenvalues which are not close to unity. ***Submitted to Physical Review B.****Comment: 20 pages, REVTeX-3.0, INLO-PUB-931028

    Statistical fluctuations of the parametric derivative of the transmission and reflection coefficients in absorbing chaotic cavities

    Full text link
    Motivated by recent theoretical and experimental works, we study the statistical fluctuations of the parametric derivative of the transmission T and reflection R coefficients in ballistic chaotic cavities in the presence of absorption. Analytical results for the variance of the parametric derivative of T and R, with and without time-reversal symmetry, are obtained for both asymmetric and left-right symmetric cavities. These results are valid for arbitrary number of channels, in completely agreement with the one channel case in the absence of absorption studied in the literature.Comment: Modified version as accepted in PR

    Vacuum polarization by topological defects in de Sitter spacetime

    Full text link
    In this paper we investigate the vacuum polarization effects associated with a massive quantum scalar field in de Sitter spacetime in the presence of gravitational topological defects. Specifically we calculate the vacuum expectation value of the field square, . Because this investigation has been developed in a pure de Sitter space, here we are mainly interested on the effects induced by the presence of the defects.Comment: Talk presented at the 1st. Mediterranean Conference on Classical and Quantum Gravity (MCCQG

    Dynamics of Enceladus and Dione inside the 2:1 Mean-Motion Resonance under Tidal Dissipation

    Full text link
    In a previous work (Callegari and Yokoyama 2007, Celest. Mech. Dyn. Astr. vol. 98), the main features of the motion of the pair Enceladus-Dione were analyzed in the frozen regime, i.e., without considering the tidal evolution. Here, the results of a great deal of numerical simulations of a pair of satellites similar to Enceladus and Dione crossing the 2:1 mean-motion resonance are shown. The resonance crossing is modeled with a linear tidal theory, considering a two-degrees-of-freedom model written in the framework of the general three-body planar problem. The main regimes of motion of the system during the passage through resonance are studied in detail. We discuss our results comparing them with classical scenarios of tidal evolution of the system. We show new scenarios of evolution of the Enceladus-Dione system through resonance not shown in previous approaches of the problem.Comment: 36 pages, 12 figures. Accepted in Celestial Mechanics and Dynamical Astronom

    Insensitivity to Time-Reversal Symmetry Breaking of Universal Conductance Fluctuations with Andreev Reflection

    Get PDF
    Numerical simulations of conduction through a disordered microbridge between a normal metal and a superconductor have revealed an anomalous insensitivity of the conductance fluctuations to a magnetic field. A theory for the anomaly is presented: Both an exact analytical calculation (using random-matrix theory) and a qualitative symmetry argument (involving the exchange of time-reversal for reflection symmetry).Comment: 8 pages, REVTeX-3.0, 2 figure

    Fokker-Planck description of the transfer matrix limiting distribution in the scattering approach to quantum transport

    Full text link
    The scattering approach to quantum transport through a disordered quasi-one-dimensional conductor in the insulating regime is discussed in terms of its transfer matrix \bbox{T}. A model of NN one-dimensional wires which are coupled by random hopping matrix elements is compared with the transfer matrix model of Mello and Tomsovic. We derive and discuss the complete Fokker-Planck equation which describes the evolution of the probability distribution of \bbox{TT}^{\dagger} with system length in the insulating regime. It is demonstrated that the eigenvalues of \ln\bbox{TT}^{\dagger} have a multivariate Gaussian limiting probability distribution. The parameters of the distribution are expressed in terms of averages over the stationary distribution of the eigenvectors of \bbox{TT}^{\dagger}. We compare the general form of the limiting distribution with results of random matrix theory and the Dorokhov-Mello-Pereyra-Kumar equation.Comment: 25 pages, revtex, no figure

    Statistical wave scattering through classically chaotic cavities in the presence of surface absorption

    Full text link
    We propose a model to describe the statistical properties of wave scattering through a classically chaotic cavity in the presence of surface absorption. Experimentally, surface absorption could be realized by attaching an "absorbing patch" to the inner wall of the cavity. In our model, the cavity is connected to the outside by a waveguide with N open modes (or channels), while an experimental patch is simulated by an "absorbing mirror" attached to the inside wall of the cavity; the mirror, consisting of a waveguide that supports Na channels, with absorption inside and a perfectly reflecting wall at its end, is described by a subunitary scattering matrix Sa. The number of channels Na, as a measure of the geometric cross section of the mirror, and the lack of unitarity of Sa as a measure of absorption, are under our control: these parameters have an important physical significance for real experiments. The absorption strength in the cavity is quantified by the trace of the lack of unitarity. The statistical distribution of the resulting S matrix for N=1 open channel and only one absorbing channel, Na =1, is solved analytically for the orthogonal and unitary universality classes, and the results are compared with those arising from numerical simulations. The relation with other models existing in the literature, in some of which absorption has a volumetric character, is also studied.Comment: 6 pages, 3 figures, submitted to Phys. Rev.

    Path Integral Approach to the Scattering Theory of Quantum Transport

    Full text link
    The scattering theory of quantum transport relates transport properties of disordered mesoscopic conductors to their transfer matrix \bbox{T}. We introduce a novel approach to the statistics of transport quantities which expresses the probability distribution of \bbox{T} as a path integral. The path integal is derived for a model of conductors with broken time reversal invariance in arbitrary dimensions. It is applied to the Dorokhov-Mello-Pereyra-Kumar (DMPK) equation which describes quasi-one-dimensional wires. We use the equivalent channel model whose probability distribution for the eigenvalues of \bbox{TT}^{\dagger} is equivalent to the DMPK equation independent of the values of the forward scattering mean free paths. We find that infinitely strong forward scattering corresponds to diffusion on the coset space of the transfer matrix group. It is shown that the saddle point of the path integral corresponds to ballistic conductors with large conductances. We solve the saddle point equation and recover random matrix theory from the saddle point approximation to the path integral.Comment: REVTEX, 9 pages, no figure
    • …
    corecore