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Insensitivity to time-reversal symmetry breaking of universal conductance
fluctuations with Andreev reflection
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Numerical simulations of conduction through a disordered microbridge between a normal metal
and a superconductor have revealed an anomalous insensitivity of the conductance fluctuations
to a magnetic field. A theory for the anomaly is presented: both an exact analytical calculation
(using random-matrix theory) and a qualitative symmetry argument (involving the exchange of
time-reversal for reflection symmetry).

Universal conductance fluctuations (UCF's) are a fun-
damental manifestation of phase-coherent transport in
disordered metals.1'2 The adjective "universal" describes
two aspects of the sample-to-sample fluctuations of the
conductance: (1) The variance varG is of order (e2/h)2,
independent of sample size or disorder strength; and (2)
var G decreases precisely by a factor of 2 if time-reversal
symmetry (T) is broken by a magnetic field. The uni-
versality of this factor of 2 has been established both
by diagrammatic perturbation theory1'2 and by random-
matrix theory.3"6 In the former approach, one has two
classes of diagrams, cooperons and diffusons, which con-
tribute equally to var G in the presence of T. A magnetic
field suppresses the cooperons but leaves the diffusons
unaffected, hence var G is reduced by |. In the latter ap-
proach, the universality of the factor-of-2 reduction fol-
lows from the Dyson-Mehta theorem,7 which applies to
the variance var A of any observable A — ]T}n a(Tn] that
is a linear statistic on the transmission eigenvalues Tn.

8

The crossover from a linear to a quadratic eigenvalue re-
pulsion upon breaking T directly leads to a reduction by
l of var A.9

The Situation is qualitatively different if the normal-
metal (N) conductor is attached at one end to a super-
conductor (S). At the NS interface the dissipative nor-
mal current is converted into a dissipationless supercur-
rent via the scattering process of Andreev reflection:10

An electron incident from the normal-metal conductor is
reflected äs a hole, with the addition of a Cooper pair
to the superconducting condensate. The conversion from
normal to supercurrent has essentially no effect on the av-
erage conductance, provided that the interface resistance
is negligibly small.11 However, the effect on the conduc-
tance fluctuations is striking: The variance is still univer-
sally of order (e2/h)2, but it has become insensitive to
the breaking of T. Numerical simulations by Marmorkos,
Beenakker, and Jalabert12 of a disordered wire attached
to a superconductor have shown that the variance is un-
affected by a T-breaking magnetic field, within the 10%
statistical uncertainty of the simulations. This does not
contradict the Dyson-Mehta theorem, because the con-
ductance GNS of the NS junction is a linear statistic in
the presence — but not in the absence-of T.13 One won-
ders whether there is some hidden symmetry principle
that would constrain var GNS to be the same, regardless

of whether T is broken or not. No such symmetry prin-
ciple has been found, and in fact we do not know of any
successful generalization so far of the theory of UCF to
quantities that are not linear statistics.14

Here we wish to announce that we have succeeded in
the analytical calculation of var GNS in the absence of T,
using techniques from random-matrix theory. We find
that var GNS f°r a disordered wire attached to a super-
conductor is reduced by (2 — ΘΟ/ττ4)"1 κ 0.929 upon
breaking T. This number is sufficiently close to l to be
consistent with the numerical simulations,12 and suffi-
ciently different from l to explain why attempts to find
a rigorous symmetry principle had failed. Still, we have
been able to find an approximate symmetry argument
that explains in an intuitively appealing way why the
number (2 - 90/π4)"1 is close to 1. Our theory is more
generally applicable than to a disordered wire: It applies
to any NS junction for which the probability distribution
P(S) of the scattering matrix S of the normal region de-
pends only on the transmission eigenvalues Tn. (Such
a distribution is called "isotropic."6) As two examples,
we consider a disordered metal grain and a ballistic con-
striction in a disordered wire. Our method can also be
used to compute the effect of a magnetic field on weak
localization in an NS junction, äs reported elsewhere.15

The starting point of our calculation is the general re-
lation between the conductance of the NS junction and
the scattering matrix S of the normal region,13

GNS = 2Gotrram ,

m = u =

We used the polar decomposition

i 0
S =

0
iVR VT
VT

v2 0
0 w

(la)

(Ib)

(2)

where ui, v2, Wi, and w2 are N χ Ν unitary matrices (N
being the number of propagating modes at the Fermi level
in each of the two leads attached to the sample). The
matrix T is a diagonal matrix with the N transmission
eigenvalues T; e [0,1] on the diagonal, and R is l — T.
In the presence of 7", one has S = ST, hence w2 = w^,
hence u — 1. (The superscript T denotes the transpose
of the matrix.) Equation (1) then simplifies to13
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\-2
(3)

and var GNS follows directly from general formulas for
the variance of a linear statistic on the transmission
eigenvalues.8'16 In the absence of T no such simplification
occurs.

To compute var GNS = (GNS) — (GNs)2 in the ab-
sence of T, we assume an Isotropie distribution17 of S,
which implies that the average {· · ·} over the ensemble
of scattering matrices can be performed in two steps:
{' ' ') = {{'' ·)«}τ> where {· · ·)„ and (· · -}T are, respec-
tively, the average over the unitary matrices u and over
the transmission eigenvalues Tz. It is convenient to add
and subtract ((GNS)U)TI so that the variance of the con-
ductance splits up into two parts,

var GNS = {(GNS)

(4)

which we evaluate separately.
The first part is the variance of {GNS}« over the distri-

bution of transmission eigenvalues. As a consequence of
the isotropy assumption, the matrix u is uniformly dis-
tributed in the group U(N) of N X 7V unitary matrices.6

To evaluate (GNS)« we need to perform an integral over
U(N) of a rational function of u, according to Eq. (1).
Such matrix integrals are notoriously difficult to evaluate
in closed form,18 but fortunately we only need the large-
N limit. Creutz19 and Mello20 have given general rules

for the integral over U (N) of polynomial functions of u.
By applying these rules we find that

(5)

It

(6)

where we have defined the trace rk = N 1

follows that, up to corrections of order unity,

= 2G07V]TT2(1 -
p=0

Since Tk is a linear statistic, we know that its fluctuations
are an order i/N smaller than the average.6 This implies
that, to leading order in l/N, var f(rk) = [/'(τ*.)]2 var rk.
The variance of Eq. (6) is therefore

((GNS)U)T (2-(n))4 0(1/N). (7)

Note that the leading term in Eq. (7) is O(l).
We now turn to the second part of Eq. (4), which in-

volves the variance (GNS)„ - (GNS)
2 of GNS over U (N) at

fixed transmission eigenvalues and subsequently an aver-
age over the T^'s. The calculation is similar in principle
to that described in the preceding paragraph, but many
more terms contribute to leading order in l/N. Here we
only give the result

2 (2 - (n))-0 (r1}-2{4{r1)
2 - 8{η> -4(7-0

2{τ1)
2(τ2) - 2<τ1)

3<τ2)

+3(τ1)
2<τ2}

2 - 4{τ1){τ3)

- 2{τ1)
4(τ2) + 6(τ2}

2 -

2(τ1)
3{τ3}} (8)

The sum of Eqs. (7) and (8) equals var GNS, according to
Eq. (4). The resulting expression contains only moments
of the transmission eigenvalues. This solves the problem
of the computation of var GNS in the absence of T, since
these moments are known.

For the application to a disordered wire (length L,
mean free path f) one has the variance2'5 7V2varT! =
and averages21 (rh) = | | )Γ(*)/Γ(*:+|). Substi-
tution into Eqs. (7) and (8) yields (in the diffusive limit
t/L -»· 0)

0.533 G. (9)

This is to be compared with the known result16 in the
presence of T,

0.574 G2,. (10)

Breaking T reduces the variance by less than 10%, äs
advertised.

We would like to obtain a more direct understanding of
why the two numbers in Eqs. (9) and (11) are so close. To
that end we return to the general expression (1) for the
conductance GNS °f a NS junction, in terms of the scat-

tering matrix S of the normal region. We compare GNS
with the conductance GNN of an entirely normal metal
consisting of two segments in series (see Fig. 1). The first
segment has scattering matrix S, the second segment is
the mirror image of the first. That is to say, the disorder
potential is specularly reflected and the sign of the mag-
netic field is reversed. The System NN thus has a reflec-
tion symmetry (<S), both in the presence and absence of
7". The scattering matrix of the second segment is Σ5"Σ,
where Σ is a 27V χ 27V matrix with zero elements, except
for Σ^^ν+ί — Σ,^+ί,ί = l (i — 1,2, . . . ,7V). (The matrix
Σ interchariges scattering states incident from left and
right.) The conductance GNN follows from the transmis-
sion matrix through the two segments in series by means
of the Landauer formula,

= G0
(lla)

(Hb)

The difference between Eqs. (1) and (11) is crucial in the
presence of 7~, when w2 = w^ , so that u — l while u'
is some random (symmetric) unitary matrix. However,
in the absence of T, u>i and w2 are independent, so that
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FIG. 1. (a) Schematic drawing of a disordered nor-
mal metal (N) connected to a superconductor (S), in a
time-reversal symmetry (T) breaking magnetic field B. In
(b) the normal region is connected in series with its mirror
image. As indicated, the magnetic field B changes sign upon
reflection. The variance of the conductance fluctuations in (a)
is exactly four times the variance in (b). The variance in (b) is
exactly two times the variance in the absence of the reflection
symmetry (S). The exchange of T for S explains the insensi-
tivity of the conductance fluctuations to a magnetic field, äs
discussed in the text.

both u and u' are randomly distributed unitary matrices.
We have repeated the calculation of the variance starting
from Eq. (11), and found that vaitimm^ = var tr ra'm't,
hence

varGNs(no T) — 4 var GNN (<S, no T)· (12)

The system NN is special because it possesses a re-
flection symmetry. Breaking S amounts to the replace-
ment of the mirror-imaged segment by a different seg-
ment, with scattering matrix 5" which is independent of
S but drawn from the same ensemble. Breaking «S re-
duces the variance of the conductance fluctuations by a
factor of 2, regardless of whether T is present or not,

var GNN(«S) = 2 var GNN(no S). (13)

We have checked this relation by an explicit calculation,
but it seems intuitively obvious if one considers that the
eigenstates separate into even and odd states that fluc-
tuate independently. Since breaking T by itself reduces
the variance of GNN by a factor of 2, we may write

var GNN (S, no T) = var GNN (T, no S). (14)

Equations (12)-(14) are exact, and hold for any isotropic
distribution of the scattering matrix. We need one more
relationship, which is approximate and holds only for the
case of a disordered wire:13'22

4varGNN(T, no S). (15)

Taken together, Eqs. (12)-(15) imply the approximate re-
lationship varGNs(7") ~ varGNs(no T). The exact cal-
culation shows that the approximation is accurate within
10%. We now understand the insensitivity of the con-
ductance fluctuations of a (disordered) NS junction to
a magnetic field äs an exchange of symmetries in the re-
lated normal System NN: As T is broken, S is established,
thereby compensating the reduction of var Gros·23

We have emphasized the general applicability of
Eqs. (7), (8), and (12)-(14), which hold not just for a
disordered wire, but for any isotropic distribution of the

N

(a) (b)

FIG. 2. (a) Schematic drawing of an NS junction consist-
ing of a disordered metal grain (shaded). (b) A disordered
normal-metal wire (shaded) containing a point contact.

scattering matrix. We illustrate this by two examples.
The first is an NS junction consisting of a disordered
metal grain [see Fig. 2 (a)]. The coupling of a normal
metal and a supercouductor to the grain occurs via bal-
listic point contacts (width much smaller than the mean
free path in the grain). Following Ref. 24, we may assume
that the scattering matrix of the grain is distributed ac-
cording to the circular ensemble of random-matrix the-
ory. This is an isotropic distribution. The relevant mo-
ments of the transmission eigenvalues in the absence of
T are24 (rk) = K + |)/Γ(Α + 1), - .

Substitution into the general formulas (7) and (8) yields

varGNs(no T) — 128.^2
243^0 0.527 G2,, (16)

which is again close to the known result in the presence
of T 24
\JL β ·)

The second example is a ballistic constriction (point
contact) in a wire that is connected to a superconduc-
tor [see Fig. 2(b)]. The point contact has conductance
JVoGo, which we assume to be much smaller than the
conductance N t/L of the disordered wire by itself. As
discussed in Ref. 25, we may assume an isotropic distri-
bution of the scattering matrix of the combined System
(point contact plus disordered wire). The moments of the
transmission eigenvalues are25 (τ^) = No/N,N2va,iTi —
O(N0L/N£)2. Substitution into Eqs. (7) and (8) yields,
in the limit N0L/N£ ->· 0,

(18)

In contrast, if T is not broken, the conductance fluctua-
tions are suppressed in this limit:25'26

= O(N0L/N£)2 <C G2 (19)

In this geometry a magnetic field greatly enhances the
conductance fluctuations. The reason that a disordered
wire with a constriction behaves so differently from an
unconstricted wire is that the relation (15) does not hold
in the presence of a constriction. However, the general
relationship (12) does hold, and indeed the result (18) is
four times the variance of a structure consisting of two
point contacts in series with a reflection symmetry.

In summary, we have solved the problem of
universal conductance fluctuations in normal-metal-
superconductor junctions in a magnetic field, under the
assumption of an isotropic distribution of the scatter-
ing matrix of the normal region. We find that the
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structure of the scattering matrix of the normal-metal-
superconductor junction in the absence of time-reversal
symmetry allows one to relate the conductance fluctua-
tions to those of a normal System with reflection symme-
try. This reflection symmetry is absent in the presence
of time-reversal symmetry. It compensates the reduction
of the conductance fluctuations due to breaking of time-

reversal symmetry, and explains the anomalous insensi-

tivity of the fluctuations in a magnetic field discovered in

Computer simulations.12
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