487 research outputs found

    Environmental policy-making networks and the future of the Amazon

    Get PDF
    This article examines four periods of environmental policy-making in the Amazon region of Brazil. It specifically analyses the role of pro-environment and pro-development policy networks in affecting policy design and implementation. It argues that the efforts of environmentalist networks trying to advocate or block relative developmentalist policies in the Amazon depend on three critical factors—whether they are able to attract the support of elites (or at least block their developmentalist policy initiatives); the type and level of international support they have; and the organizational and financial resources that they are able to mobilize. In analysing the four periods, this article finds that while international influences and resources have been substantial in enabling environmentalist networks to flourish and influence the policy, their effectiveness has been nearly always outweighed by Brazilian developmentalist interests. The outcome in each phase has been a different form of stalemate on environmental protection, and the deforestation continued each time, albeit at slower rates. These findings suggest that the key for significantly lower rates of deforestation on the Amazon may be in the ability of pro-environment networks to neutralize opposition by creating an incentive structure that ‘compensates’ potential losers of policies that promote conservation

    Universality in two-dimensional Kardar-Parisi-Zhang growth

    Full text link
    We analyze simulations results of a model proposed for etching of a crystalline solid and results of other discrete models in the 2+1-dimensional Kardar-Parisi-Zhang (KPZ) class. In the steady states, the moments W_n of orders n=2,3,4 of the heights distribution are estimated. Results for the etching model, the ballistic deposition (BD) model and the temperature-dependent body-centered restricted solid-on-solid model (BCSOS) suggest the universality of the absolute value of the skewness S = W_3 / (W_2)^(3/2) and of the value of the kurtosis Q = W_4 / (W_2)^2 - 3. The sign of the skewness is the same of the parameter \lambda of the KPZ equation which represents the process in the continuum limit. The best numerical estimates, obtained from the etching model, are |S| = 0.26 +- 0.01 and Q = 0.134 +- 0.015. For this model, the roughness exponent \alpha = 0.383 +- 0.008 is obtained, accounting for a constant correction term (intrinsic width) in the scaling of the squared interface width. This value is slightly below previous estimates of extensive simulations and rules out the proposal of the exact value \alpha=2/5. The conclusion is supported by results for the ballistic deposition model. Independent estimates of the dynamical exponent and of the growth exponent are 1.605 <= z <= 1.64 and \beta = 0.229 +- 0.005, respectively, which are consistent with the relations \alpha + z = 2 and z = \alpha / \beta.Comment: 8 pages, 9 figures, to be published in Phys. Rev.

    Vacuum fluctuations and topological Casimir effect in Friedmann-Robertson-Walker cosmologies with compact dimensions

    Full text link
    We investigate the Wightman function, the vacuum expectation values of the field squared and the energy-momentum tensor for a massless scalar field with general curvature coupling parameter in spatially flat Friedmann-Robertson-Walker universes with an arbitrary number of toroidally compactified dimensions. The topological parts in the expectation values are explicitly extracted and in this way the renormalization is reduced to that for the model with trivial topology. In the limit when the comoving lengths of the compact dimensions are very short compared to the Hubble length, the topological parts coincide with those for a conformal coupling and they are related to the corresponding quantities in the flat spacetime by standard conformal transformation. In the opposite limit of large comoving lengths of the compact dimensions, in dependence of the curvature coupling parameter, two regimes are realized with monotonic or oscillatory behavior of the vacuum expectation values. In the monotonic regime and for nonconformally and nonminimally coupled fields the vacuum stresses are isotropic and the equation of state for the topological parts in the energy density and pressures is of barotropic type. In the oscillatory regime, the amplitude of the oscillations for the topological part in the expectation value of the field squared can be either decreasing or increasing with time, whereas for the energy-momentum tensor the oscillations are damping.Comment: 20 pages, 2 figure

    Towards a holographic dual of large-N_c QCD

    Full text link
    We study N_f D6-brane probes in the supergravity background dual to N_c D4-branes compactified on a circle with supersymmetry-breaking boundary conditions. In the limit in which the resulting Kaluza--Klein modes decouple, the gauge theory reduces to non-supersymmetric, four-dimensional QCD with N_c colours and N_f << N_c flavours. As expected, this decoupling is not fully realised within the supergravity/Born--Infeld approximation. For N_f = 1 and massless quarks, m_q = 0, we exhibit spontaneous chiral symmetry breaking by a quark condensate, \neq 0, and find the associated massless `pion' in the spectrum. The latter becomes massive for m_q > 0, obeying the Gell-Mann--Oakes--Renner relation: M_pi^2= - m_q / \f_pi^2. In the case N_f > 1 we provide a holographic version of the Vafa--Witten theorem, which states that the U(N_f) flavour symmetry cannot be spontaneously broken. Further we find N_f^2 - 1 unexpectedly light pseudo-scalar mesons in the spectrum. We argue that these are not (pseudo) Goldstone bosons and speculate on the string mechanism responsible for their lightness. We then study the theory at finite temperature and exhibit a phase transition associated with a discontinuity in the chiral condensate. D6/anti-D6 pairs are also briefly discussed.Comment: 43 pages, LaTeX; v3: Scalar vs. pseudo-scalar nature of mesons clarified, references added. v4: Small change in Acknowledgment

    Lattice dynamics effects on small polaron properties

    Full text link
    This study details the conditions under which strong-coupling perturbation theory can be applied to the molecular crystal model, a fundamental theoretical tool for analysis of the polaron properties. I show that lattice dimensionality and intermolecular forces play a key role in imposing constraints on the applicability of the perturbative approach. The polaron effective mass has been computed in different regimes ranging from the fully antiadiabatic to the fully adiabatic. The polaron masses become essentially dimension independent for sufficiently strong intermolecular coupling strengths and converge to much lower values than those tradition-ally obtained in small-polaron theory. I find evidence for a self-trapping transition in a moderately adiabatic regime at an electron-phonon coupling value of .3. Our results point to a substantial independence of the self-trapping event on dimensionality.Comment: 8 pages, 5 figure

    The Relativistic Factor in the Orbital Dynamics of Point Masses

    Full text link
    There is a growing population of relativistically relevant minor bodies in the Solar System and a growing population of massive extrasolar planets with orbits very close to the central star where relativistic effects should have some signature. Our purpose is to review how general relativity affects the orbital dynamics of the planetary systems and to define a suitable relativistic correction for Solar System orbital studies when only point masses are considered. Using relativistic formulae for the N body problem suited for a planetary system given in the literature we present a series of numerical orbital integrations designed to test the relevance of the effects due to the general theory of relativity in the case of our Solar System. Comparison between different algorithms for accounting for the relativistic corrections are performed. Relativistic effects generated by the Sun or by the central star are the most relevant ones and produce evident modifications in the secular dynamics of the inner Solar System. The Kozai mechanism, for example, is modified due to the relativistic effects on the argument of the perihelion. Relativistic effects generated by planets instead are of very low relevance but detectable in numerical simulations

    Towards a nanospecific approach for risk assessment.

    Get PDF
    In the current paper, a new strategy for risk assessment of nanomaterials is described, which builds upon previous project outcomes and is developed within the FP7 NANoREG project. NANoREG has the aim to develop, for the long term, new testing strategies adapted to a high number of nanomaterials where many factors can affect their environmental and health impact. In the proposed risk assessment strategy, approaches for (Quantitative) Structure Activity Relationships ((Q)SARs), grouping and read-across are integrated and expanded to guide the user how to prioritise those nanomaterial applications that may lead to high risks for human health. Furthermore, those aspects of exposure, kinetics and hazard assessment that are most likely to be influenced by the nanospecific properties of the material under assessment are identified. These aspects are summarised in six elements, which play a key role in the strategy: exposure potential, dissolution, nanomaterial transformation, accumulation, genotoxicity and immunotoxicity. With the current approach it is possible to identify those situations where the use of nanospecific grouping, read-across and (Q)SAR tools is likely to become feasible in the future, and to point towards the generation of the type of data that is needed for scientific justification, which may lead to regulatory acceptance of nanospecific applications of these tools.The research leading to these results has been partially funded by the European Union Seventh Framework Programme (FP7/ 2007e2013) under the project NANoREG (A common European approach to the regulatory testing of nanomaterials), grant agreement 310584.info:eu-repo/semantics/publishedVersio
    corecore