7,236 research outputs found
Electronic transport through ballistic chaotic cavities: reflection symmetry, direct processes, and symmetry breaking
We extend previous studies on transport through ballistic chaotic cavities
with spatial left-right (LR) reflection symmetry to include the presence of
direct processes. We first analyze fully LR-symmetric systems in the presence
of direct processes and compare the distribution w(T) of the transmission
coefficient T with that for an asymmetric cavity with the same "optical" S
matrix. We then study the problem of "external mixing" of the symmetry caused
by an asymmetric coupling of the cavity to the outside. We first consider the
case where symmetry breaking arises because two symmetrically positioned
waveguides are coupled to the cavity by means of asymmetric tunnel barriers.
Although this system is asymmetric with respect to the LR operation, it has a
striking memory of the symmetry of the cavity it was constructed from.
Secondly, we break LR symmetry in the absence of direct proceses by
asymmetrically positioning the two waveguides and compare the results with
those for the completely asymmetric case.Comment: 15 pages, 8 Postscript figures, submitted to Phys. Rev.
Statistical study of the conductance and shot noise in open quantum-chaotic cavities: Contribution from whispering gallery modes
In the past, a maximum-entropy model was introduced and applied to the study
of statistical scattering by chaotic cavities, when short paths may play an
important role in the scattering process. In particular, the validity of the
model was investigated in relation with the statistical properties of the
conductance in open chaotic cavities. In this article we investigate further
the validity of the maximum-entropy model, by comparing the theoretical
predictions with the results of computer simulations, in which the Schroedinger
equation is solved numerically inside the cavity for one and two open channels
in the leads; we analyze, in addition to the conductance, the zero-frequency
limit of the shot-noise power spectrum. We also obtain theoretical results for
the ensemble average of this last quantity, for the orthogonal and unitary
cases of the circular ensemble and an arbitrary number of channels. Generally
speaking, the agreement between theory and numerics is good. In some of the
cavities that we study, short paths consist of whispering gallery modes, which
were excluded in previous studies. These cavities turn out to be all the more
interesting, as it is in relation with them that we found certain systematic
discrepancies in the comparison with theory. We give evidence that it is the
lack of stationarity inside the energy interval that is analyzed, and hence the
lack of ergodicity that gives rise to the discrepancies. Indeed, the agreement
between theory and numerical simulations is improved when the energy interval
is reduced to a point and the statistics is then collected over an ensemble. It
thus appears that the maximum-entropy model is valid beyond the domain where it
was originally derived. An understanding of this situation is still lacking at
the present moment.Comment: Revised version, minor modifications, 28 pages, 7 figure
Theory of the Fermi Arcs, the Pseudogap, and the Anisotropy in k-space of Cuprate Superconductors
The appearance of the Fermi arcs or gapless regions at the nodes of the Fermi
surface just above the critical temperature is described through
self-consistent calculations in an electronic disordered medium. We develop a
model for cuprate superconductors based on an array of Josephson junctions
formed by grains of inhomogeneous electronic density derived from a phase
separation transition. This approach provides physical insights to the most
important properties of these materials like the pseudogap phase as forming by
the onset of local (intragrain) superconducting amplitudes and the zero
resistivity critical temperature due to phase coherence activated by
Josephson coupling. The formation of the Fermi arcs and the dichotomy in
k-space follows from the direction dependence of the junctions tunneling
current on the d-wave symmetry on the planes. We show that this
semi-phenomenological approach reproduces also the main future of the cuprates
phase diagram.Comment: 5 pages 7 fig
Invisible victims : the effects of secondary and vicarious trauma on milieu staff members
This study was undertaken to determine the prevalence of Secondary Traumatic Stress (STS) and Vicarious Trauma (VT) in non-clinically trained milieu staff members working in close collaboration with victims of trauma. This study also aimed to discover the extent to which these individuals experience these effects, and will hopefully help bridge the existing gap in the literature around VT and STS in non-clinically trained populations of helpers. In a study of 49 participants including milieu staff members from both inpatient and residential school settings, prevalence of PTSD symptomology as a result of Secondary Traumatic Stress was explored through the use of a survey, the format of which varied based on the identified setting. The results of this study indicated that a significant portion of participants was found to be suffering from secondary or traumatic stress in their current place of employment. Of additional significance was the degree of secondary stress they were experiencing, the majority falling into moderate to severe categories
Statistical wave scattering through classically chaotic cavities in the presence of surface absorption
We propose a model to describe the statistical properties of wave scattering
through a classically chaotic cavity in the presence of surface absorption.
Experimentally, surface absorption could be realized by attaching an "absorbing
patch" to the inner wall of the cavity. In our model, the cavity is connected
to the outside by a waveguide with N open modes (or channels), while an
experimental patch is simulated by an "absorbing mirror" attached to the inside
wall of the cavity; the mirror, consisting of a waveguide that supports Na
channels, with absorption inside and a perfectly reflecting wall at its end, is
described by a subunitary scattering matrix Sa. The number of channels Na, as a
measure of the geometric cross section of the mirror, and the lack of unitarity
of Sa as a measure of absorption, are under our control: these parameters have
an important physical significance for real experiments. The absorption
strength in the cavity is quantified by the trace of the lack of unitarity. The
statistical distribution of the resulting S matrix for N=1 open channel and
only one absorbing channel, Na =1, is solved analytically for the orthogonal
and unitary universality classes, and the results are compared with those
arising from numerical simulations. The relation with other models existing in
the literature, in some of which absorption has a volumetric character, is also
studied.Comment: 6 pages, 3 figures, submitted to Phys. Rev.
Nonplanar integrability at two loops
In this article we compute the action of the two loop dilatation operator on
restricted Schur polynomials that belong to the su(2) sector, in the displaced
corners approximation. In this non-planar large N limit, operators that
diagonalize the one loop dilatation operator are not corrected at two loops.
The resulting spectrum of anomalous dimensions is related to a set of decoupled
harmonic oscillators, indicating integrability in this sector of the theory at
two loops. The anomalous dimensions are a non-trivial function of the 't Hooft
coupling, with a spectrum that is continuous and starting at zero at large N,
but discrete at finite N.Comment: version to appear in JHE
Dynamics of Enceladus and Dione inside the 2:1 Mean-Motion Resonance under Tidal Dissipation
In a previous work (Callegari and Yokoyama 2007, Celest. Mech. Dyn. Astr.
vol. 98), the main features of the motion of the pair Enceladus-Dione were
analyzed in the frozen regime, i.e., without considering the tidal evolution.
Here, the results of a great deal of numerical simulations of a pair of
satellites similar to Enceladus and Dione crossing the 2:1 mean-motion
resonance are shown. The resonance crossing is modeled with a linear tidal
theory, considering a two-degrees-of-freedom model written in the framework of
the general three-body planar problem. The main regimes of motion of the system
during the passage through resonance are studied in detail. We discuss our
results comparing them with classical scenarios of tidal evolution of the
system. We show new scenarios of evolution of the Enceladus-Dione system
through resonance not shown in previous approaches of the problem.Comment: 36 pages, 12 figures. Accepted in Celestial Mechanics and Dynamical
Astronom
Generalized Fokker-Planck Equation For Multichannel Disordered Quantum Conductors
The Dorokhov-Mello-Pereyra-Kumar (DMPK) equation, which describes the
distribution of transmission eigenvalues of multichannel disordered conductors,
has been enormously successful in describing a variety of detailed transport
properties of mesoscopic wires. However, it is limited to the regime of quasi
one dimension only. We derive a one parameter generalization of the DMPK
equation, which should broaden the scope of the equation beyond the limit of
quasi one dimension.Comment: 8 pages, abstract, introduction and summary rewritten for broader
readership. To be published in Phys. Rev. Let
- …