6,291 research outputs found

    Statistical fluctuations of the parametric derivative of the transmission and reflection coefficients in absorbing chaotic cavities

    Full text link
    Motivated by recent theoretical and experimental works, we study the statistical fluctuations of the parametric derivative of the transmission T and reflection R coefficients in ballistic chaotic cavities in the presence of absorption. Analytical results for the variance of the parametric derivative of T and R, with and without time-reversal symmetry, are obtained for both asymmetric and left-right symmetric cavities. These results are valid for arbitrary number of channels, in completely agreement with the one channel case in the absence of absorption studied in the literature.Comment: Modified version as accepted in PR

    Statistical wave scattering through classically chaotic cavities in the presence of surface absorption

    Full text link
    We propose a model to describe the statistical properties of wave scattering through a classically chaotic cavity in the presence of surface absorption. Experimentally, surface absorption could be realized by attaching an "absorbing patch" to the inner wall of the cavity. In our model, the cavity is connected to the outside by a waveguide with N open modes (or channels), while an experimental patch is simulated by an "absorbing mirror" attached to the inside wall of the cavity; the mirror, consisting of a waveguide that supports Na channels, with absorption inside and a perfectly reflecting wall at its end, is described by a subunitary scattering matrix Sa. The number of channels Na, as a measure of the geometric cross section of the mirror, and the lack of unitarity of Sa as a measure of absorption, are under our control: these parameters have an important physical significance for real experiments. The absorption strength in the cavity is quantified by the trace of the lack of unitarity. The statistical distribution of the resulting S matrix for N=1 open channel and only one absorbing channel, Na =1, is solved analytically for the orthogonal and unitary universality classes, and the results are compared with those arising from numerical simulations. The relation with other models existing in the literature, in some of which absorption has a volumetric character, is also studied.Comment: 6 pages, 3 figures, submitted to Phys. Rev.

    Intensity correlations in electronic wave propagation in a disordered medium: the influence of spin-orbit scattering

    Full text link
    We obtain explicit expressions for the correlation functions of transmission and reflection coefficients of coherent electronic waves propagating through a disordered quasi-one-dimensional medium with purely elastic diffusive scattering in the presence of spin-orbit interactions. We find in the metallic regime both large local intensity fluctuations and long-range correlations which ultimately lead to universal conductance fluctuations. We show that the main effect of spin-orbit scattering is to suppress both local and long-range intensity fluctuations by a universal symmetry factor 4. We use a scattering approach based on random transfer matrices.Comment: 15 pages, written in plain TeX, Preprint OUTP-93-42S (University of Oxford), to appear in Phys. Rev.

    Vacuum polarization by topological defects in de Sitter spacetime

    Full text link
    In this paper we investigate the vacuum polarization effects associated with a massive quantum scalar field in de Sitter spacetime in the presence of gravitational topological defects. Specifically we calculate the vacuum expectation value of the field square, . Because this investigation has been developed in a pure de Sitter space, here we are mainly interested on the effects induced by the presence of the defects.Comment: Talk presented at the 1st. Mediterranean Conference on Classical and Quantum Gravity (MCCQG

    Distribution of the S-matrix in chaotic microwave cavities with direct processes and absorption

    Full text link
    We quantify the presence of direct processes in the S-matrix of chaotic microwave cavities with absorption in the one-channel case. To this end the full distribution P_S(S) of the S-matrix, i.e. S=\sqrt{R}e^{i\theta}, is studied in cavities with time-reversal symmetry for different antenna coupling strengths T_a or direct processes. The experimental results are compared with random-matrix calculations and with numerical simulations based on the Heidelberg approach including absorption. The theoretical result is a generalization of the Poisson kernel. The experimental and the numerical distributions are in excellent agreement with random-matrix predictions for all cases.Comment: 4 pages, 4 figure

    Conductance peaks in open quantum dots

    Full text link
    We present a simple measure of the conductance fluctuations in open ballistic chaotic quantum dots, extending the number of maxima method originally proposed for the statistical analysis of compound nuclear reactions. The average number of extreme points (maxima and minima) in the dimensionless conductance, TT, as a function of an arbitrary external parameter ZZ, is directly related to the autocorrelation function of T(Z)T(Z). The parameter ZZ can be associated to an applied gate voltage causing shape deformation in quantum dot, an external magnetic field, the Fermi energy, etc.. The average density of maxima is found to be =αZ/Zc = \alpha_{Z}/Z_c, where αZ\alpha_{Z} is a universal constant and ZcZ_c is the conductance autocorrelation length, which is system specific. The analysis of does not require large statistic samples, providing a quite amenable way to access information about parametric correlations, such as ZcZ_c.Comment: 5 pages, 5 figures, accepted to be published - Physical Review Letter

    Dissipation in planar resonant planetary systems

    Full text link
    Close-in planetary systems detected by the Kepler mission present an excess of periods ratio that are just slightly larger than some low order resonant values. This feature occurs naturally when resonant couples undergo dissipation that damps the eccentricities. However, the resonant angles appear to librate at the end of the migration process, which is often believed to be an evidence that the systems remain in resonance. Here we provide an analytical model for the dissipation in resonant planetary systems valid for low eccentricities. We confirm that dissipation accounts for an excess of pairs that lie just aside from the nominal periods ratios, as observed by the Kepler mission. In addition, by a global analysis of the phase space of the problem, we demonstrate that these final pairs are non-resonant. Indeed, the separatrices that exist in the resonant systems disappear with the dissipation, and remains only a circulation of the orbits around a single elliptical fixed point. Furthermore, the apparent libration of the resonant angles can be explained using the classical secular averaging method. We show that this artifact is only due to the severe damping of the amplitudes of the eigenmodes in the secular motion.Comment: 18 pages, 20 figures, accepted to A&

    Exact Coupling Coefficient Distribution in the Doorway Mechanism

    Full text link
    In many--body and other systems, the physics situation often allows one to interpret certain, distinct states by means of a simple picture. In this interpretation, the distinct states are not eigenstates of the full Hamiltonian. Hence, there is an interaction which makes the distinct states act as doorways into background states which are modeled statistically. The crucial quantities are the overlaps between the eigenstates of the full Hamiltonian and the doorway states, that is, the coupling coefficients occuring in the expansion of true eigenstates in the simple model basis. Recently, the distribution of the maximum coupling coefficients was introduced as a new, highly sensitive statistical observable. In the particularly important regime of weak interactions, this distribution is very well approximated by the fidelity distribution, defined as the distribution of the overlap between the doorway states with interaction and without interaction. Using a random matrix model, we calculate the latter distribution exactly for regular and chaotic background states in the cases of preserved and fully broken time--reversal invariance. We also perform numerical simulations and find excellent agreement with our analytical results.Comment: 22 pages, 4 figure

    Quantum and Boltzmann transport in the quasi-one-dimensional wire with rough edges

    Full text link
    We study quantum transport in Q1D wires made of a 2D conductor of width W and length L>>W. Our aim is to compare an impurity-free wire with rough edges with a smooth wire with impurity disorder. We calculate the electron transmission through the wires by the scattering-matrix method, and we find the Landauer conductance for a large ensemble of disordered wires. We study the impurity-free wire whose edges have a roughness correlation length comparable with the Fermi wave length. The mean resistance and inverse mean conductance 1/ are evaluated in dependence on L. For L -> 0 we observe the quasi-ballistic dependence 1/ = = 1/N_c + \rho_{qb} L/W, where 1/N_c is the fundamental contact resistance and \rho_{qb} is the quasi-ballistic resistivity. As L increases, we observe crossover to the diffusive dependence 1/ = = 1/N^{eff}_c + \rho_{dif} L/W, where \rho_{dif} is the resistivity and 1/N^{eff}_c is the effective contact resistance corresponding to the N^{eff}_c open channels. We find the universal results \rho_{qb}/\rho_{dif} = 0.6N_c and N^{eff}_c = 6 for N_c >> 1. As L exceeds the localization length \xi, the resistance shows onset of localization while the conductance shows the diffusive dependence 1/ = 1/N^{eff}_c + \rho_{dif} L/W up to L = 2\xi and the localization for L > 2\xi only. On the contrary, for the impurity disorder we find a standard diffusive behavior, namely 1/ = = 1/N_c + \rho_{dif} L/W for L < \xi. We also derive the wire conductivity from the semiclassical Boltzmann equation, and we compare the semiclassical electron mean-free path with the mean free path obtained from the quantum resistivity \rho_{dif}. They coincide for the impurity disorder, however, for the edge roughness they strongly differ, i.e., the diffusive transport is not semiclassical. It becomes semiclassical for the edge roughness with large correlation length
    corecore