714 research outputs found

    X-ray observations and mass determinations in the cluster of galaxies Cl0024+17

    Get PDF
    We present a detailed analysis of the mass distribution in the rich and distant cluster of galaxies Cl0024+17. X-ray data come from both a deep ROSAT/HRI image of the field (Bohringer et al. 1999) and ASCA spectral data. Using a wide field CCD image of the cluster, we optically identify all the faint X-ray sources, whose counts are compatible with deep X-ray number counts. In addition we marginally detect the X-ray counter-part of the gravitational shear perturbation detected by Bonnet et al. (1994) at a 2.5 σ\sigma level. A careful spectral analysis of ASCA data is also presented. In particular, we extract a low resolution spectrum of the cluster free from the contamination by a nearby point source located 1.2 arcmin from the center. The X-ray temperature deduced from this analysis is TX=5.7−2.1+4.9T_X = 5.7 ^{+4.9}_{-2.1} keV at the 90% confidence level. The comparison between the mass derived from a standard X-ray analysis and from other methods such as the Virial Theorem or the gravitational lensing effect lead to a mass discrepancy of a factor 1.5 to 3. We discuss all the possible sources of uncertainties in each method of mass determination and give some indications on the way to reduce them. A complementary study of optical data is in progress and may solve the X-ray/optical discrepancy through a better understanding of the dynamics of the cluster.Comment: Revised version, accepted in Astronomy and Astrophysics (Main Journal). Few changes in the discussio

    The ESO-Sculptor Faint Galaxy Redshift Survey: The Photometric Sample

    Get PDF
    We present the photometric sample of a faint galaxy survey carried out in the southern hemisphere, using CCDs on the 3.60m and NTT-3.5m telescopes at La Silla (ESO). The survey area is a continuous strip of 0.2 deg x 1.53 deg located at high galactic latitude (-83 deg) in the Sculptor constellation. The photometric survey provides total magnitudes in the bands B, V (Johnson) and R (Cousins) to limiting magnitudes of 24.5, 24.0, 23.5 respectively. To these limits, the catalog contains about 9500, 12150, 13000 galaxies in B, V, R bands respectively and is the first large digital multi-colour photometric catalog at this depth. This photometric survey also provides the entry catalog for a fully-sampled redshift survey of ~ 700 galaxies with R < 20.5 (Bellanger et al. 1995). In this paper, we describe the photometric observations and the steps used in the data reduction. The analysis of objects and the star-galaxy separation with a neural network are performed using SExtractor, a new photometric software developed by E. Bertin (1996). The photometric accuracy of the resulting catalog is ~ 0.05 mag for R < 22. The differential galaxy number counts in B, V, R are in good agreement with previously published CCD studies and confirm the evidence for significant evolution at faint magnitudes as compared to a standard non evolving model (by factors 3.6, 2.6, 2.1). The galaxy colour distributions B-R, B-V of our sample show a blueing trend of ~ 0.5 mag between 21 < R < 23.5 in contrast to the V-R colour distribution where no significant evolution is observed.Comment: LATEX, 18 Postscript figures, 20 pages. To appear July 1997. Modified version of article. Abstract corrected for missing lin

    Detection of weak lensing by a cluster of galaxies at z=0.83

    Get PDF
    We report the detection of weak gravitational lensing of faint, distant background galaxies by the rich, X-ray luminous cluster of galaxies MS1054-03 at z=0.83. This is the first measurement of weak lensing by a bona fide cluster at such a high redshift. We detect tangential shear at the 5% - 10% level over a range of radii 50'' < r < 250'' centered on the optical position of the cluster. Two-dimensional mass reconstruction using galaxies with 21.5 < I < 25.5 shows a strong peak which coincides with the peak of the smoothed cluster light distribution. Splitting this sample by magnitude (at I = 23.5) and color (at R-I = 0.7), we find that the brighter and redder subsamples are only very weakly distorted, indicating that the faint blue galaxies (FBG's), which dominate the shear signal, are relatively more distant. The derived cluster mass is quite sensitive to the N(z) for the FBG's. At one extreme, if all the FBG's are at z_s = 3, then the mass within a 0.5h−10.5h^{-1}Mpc aperture is (5.9±1.24)×1014(5.9 \pm 1.24)\times 10^{14}\h1 M⊙M_\odot, and the mass-to-light ratio is M/LV=350±70hM/L_V = 350 \pm 70 h in solar units. For zs=1.5z_s = 1.5 the derived mass is ∌\sim70\% higher and M/L≃580hM/L \simeq 580 h. If N(z)N(z) follows the no evolution model (in shape) then M/L≃800hM/L \simeq 800h, and if all the FBG's lie at z_s\la 1 the required M/LM/L exceeds 1600h1600h. These data provide clear evidence that large, dense mass concentrations existed at early epochs; that they can be weighed efficiently by weak lensing observations; and that most of the FBG's are at high redshift.Comment: Submitted to ApJ, 15 pages (incl 8 figs, 3 of which are plates). Plate images not included, but are available from ftp://hubble.ifa.hawaii.edu/pub/ger/ms1054/ms1054_fig[1,3,5].ps.

    The descendents of Lyman Break Galaxies in galaxy clusters: spatial distribution and orbital properties

    Get PDF
    We combine semi-analytical methods with a ultra-high resolution simulation of a galaxy cluster (of mass 2.3 10^14h-1Msolar, and 4 10^6 particles within its virial radius) formed in a standard CDM universe to study the spatial distribution and orbital properties of the present-day descendents of Lyman Break Galaxies (LBGs). At the present time only five (out of 12) of halos containing LBGs survive as separate entities inside the cluster virial radius. Their circular velocities are in the range 200 - 550 km/sec. Seven halos merged together to form the central object at the very center of the cluster. Using semi-analytical modeling of galaxy evolution we show that descendents of halos containing LBGs now host giant elliptical galaxies. Galaxy orbits are radial, with a pericenter to apocenter ratio of about 1:5. The orbital eccentricities of LBGs descendents are statistically indistinguishable from those of the average galaxy population inside the cluster, suggesting that the orbits of these galaxies are not significantly affected by dynamical friction decay after the formation of the cluster's main body. In this cluster, possibly due to its early formation time, the descendents of LBGs are contained within the central 60% of the cluster virial radius and have an orbital velocity dispersion lower than the global galaxy population, originating a mild luminosity segregation for the brightest cluster members. Mass estimates based only on LBGs descendents (especially including the central cD) reflect this bias in space and velocity and underestimate the total mass of this well virialized cluster by up to a factor of two compared to estimates using at least 20 cluster members.Comment: 6 Pages, 2 Postscript figures. Submitted to Ap

    A Collision of Subclusters in Abell 754

    Full text link
    We present direct evidence of a collision of subclusters in the galaxy cluster Abell 754. Our comparison of new optical data and archival ROSAT PSPC X-ray data reveal three collision signatures predicted by n-body/hydrodynamical simulations of hierarchical cluster evolution. First, there is strong evidence of a non-hydrostatic process; neither of the two major clumps in the galaxy distribution lies on the off-center peak of the X-ray emission from the intracluster gas. Second, the peak of the X-ray emission is elongated perpendicular to the collision axis defined by the centroids of the two galaxy clumps. Third, there is evidence of compression-heated gas; one of A754's two X-ray temperature components (Henry & Briel 1995) is among the hottest observed in any cluster and hotter than that inferred from the velocity dispersion of the associated galaxy clump. These signatures are consistent with the qualitative features of simulations (Evrard 1990a,b) in which two subclusters have collided in the plane of the sky during roughly the last Gyr. The detection of such collisions is crucial for understanding both the dynamics of individual clusters and the underlying cosmology. First, for systems like A754, estimating the cluster X-ray mass from assumptions of hydrostatic equilibrium and isothermality is incorrect and may produce the discrepancies sometimes found between X-ray masses and those derived from gravitational lens models (Babul & Miralda-Escude 1994). Second, the fraction of nearby clusters in which subclusters have collided in the last Gyr is especially sensitive to the mean mass density parameter Omega_0 (cf. Richstone et al. 1992; Evrard et al. 1993; Lacey & Cole 1993). With a large, well-defined cluster sample, it will be possible to place a new and powerful constraint on cosmological models.Comment: 4 pages + 1 color figure (Postscript). Accepted for Publication in ApJ Letter

    Pure Luminosity Evolution Hypothesis for QSOs: From Luminosity Functions to Synthetic Catalogues

    Get PDF
    This paper describes the simulation of realistic Monte-Carlo extragalactic catalogues, aimed at comparing the behaviour of cosmological tests versus input parameters. QSO catalogues are built on a Luminosity Function derived from data through suitable computation of individual maximum volumes in complete (but magnitude- and redshift-limited) samples requiring neither of redshift nor of apparent magnitude histogram. The values of the evolution parameter are derived for various cosmologies, corresponding to =1/2 in the sample of 400 Ultra-Violet Excess (UVX) QSOs (Boyle et al 1990). The various luminosity functions are compared, both for the whole sample and in redshift bins. An evolution characteristic time is defined and computed, depending strongly on the cosmology, but practically constant when expressed in terms of the age of the Universe. Algorithms are given for producing unbiased or biased catalogues based on the null hypothesis that the objects are uniformly distributed in volume but suffer Pure Luminosity Evolution.Comment: uuencode compressed tar file of Latex and macros files. Tar compressed poscript files of the papers and figures are also available by anonymous ftp at ftp://summer.obs-mip.fr/pub/OUTGOING/paper2 or upon request at [email protected]

    The Nature of Star Formation in Lensed Galaxies at High Redshift

    Get PDF
    We present near-infrared photometry of all available gravitationally lensed ‘arcs’ with spectroscopic redshifts. By combining this photometry with optical data, we find that the bulk of the systems with z ~ 1 are intrinsically blue across the rest-frame spectral region 2000 Å to 1 ÎŒm. Using a combination of optical and optical-infrared colours, we demonstrate that these systems cannot be blue by virtue of a secondary burst of star formation superimposed on an evolved population, but we are unable to distinguish directly between major star formation events in a generic young galaxy and an extended era of constant star formation typical of late-type spirals. Using various arguments, we conclude that our arcs represent modest gravitational magnification of typical field galaxies. Consequently, if the star formation seen is representative of that in field galaxies at z ≄ 1, the absence of high-redshift galaxies in current deep spectroscopic surveys to bJ≃24bJ≃24 supports the hypothesis that the bulk of the star formation in normal galaxies occurred over an extended era up to the epoch corresponding to z ~ 1
    • 

    corecore