1,383 research outputs found
Philippine Classroom Teachers as Researchers: Teachersā Perceptions, Motivations, and Challenges
This study explores teachersā perceptions and motivations, challenges, and needs of 50 teachers in Agusan del Norte, Philippines with regards to doing research. Methodologies used were survey questionnaire, and group and individual interviews. Findings revealed that teacher-respondents had a positive perceptions towards doing research and its benefits to their teaching practice and studentsā learning process. Thus, job promotion is the motivating factor why teachers did research. However, reported challenges such as lack of research knowledge and skills, heavy teaching loads, and lack of financial support from the schools obstructed them from doing it. Attending and participating to research trainings, receiving research incentives, and having lighter teaching timetable were what the teachers perceived they need to do research. The implication is for the policy makers, researchers, and schoolās officials to consider the findings of this study and address the needs of these teachers in order to create a community of teacher-researchers
Fast DNA translocation through a solid-state nanopore
We report translocation experiments on double-strand DNA through a silicon
oxide nanopore. Samples containing DNA fragments with seven different lengths
between 2000 to 96000 basepairs have been electrophoretically driven through a
10 nm pore. We find a power-law scaling of the translocation time versus
length, with an exponent of 1.26 0.07. This behavior is qualitatively
different from the linear behavior observed in similar experiments performed
with protein pores. We address the observed nonlinear scaling in a theoretical
model that describes experiments where hydrodynamic drag on the section of the
polymer outside the pore is the dominant force counteracting the driving. We
show that this is the case in our experiments and derive a power-law scaling
with an exponent of 1.18, in excellent agreement with our data.Comment: 5 pages, 2 figures. Submitted to PR
Anomalous Dynamics of Forced Translocation
We consider the passage of long polymers of length N through a hole in a
membrane. If the process is slow, it is in principle possible to focus on the
dynamics of the number of monomers s on one side of the membrane, assuming that
the two segments are in equilibrium. The dynamics of s(t) in such a limit would
be diffusive, with a mean translocation time scaling as N^2 in the absence of a
force, and proportional to N when a force is applied. We demonstrate that the
assumption of equilibrium must break down for sufficiently long polymers (more
easily when forced), and provide lower bounds for the translocation time by
comparison to unimpeded motion of the polymer. These lower bounds exceed the
time scales calculated on the basis of equilibrium, and point to anomalous
(sub-diffusive) character of translocation dynamics. This is explicitly
verified by numerical simulations of the unforced translocation of a
self-avoiding polymer. Forced translocation times are shown to strongly depend
on the method by which the force is applied. In particular, pulling the polymer
by the end leads to much longer times than when a chemical potential difference
is applied across the membrane. The bounds in these cases grow as N^2 and
N^{1+\nu}, respectively, where \nu is the exponent that relates the scaling of
the radius of gyration to N. Our simulations demonstrate that the actual
translocation times scale in the same manner as the bounds, although influenced
by strong finite size effects which persist even for the longest polymers that
we considered (N=512).Comment: 13 pages, RevTeX4, 16 eps figure
Applied design thinking in urban air mobility: creating the airtaxi cabin design of the future from a user perspective
In the course of developing digital and future aviation cabin concepts at the
German Aerospace Center, the exploration of user-centered and
acceptance-enhancing methods plays a central role. The challenge here is to
identify the flexible range of requirements of different user groups for a
previously non-existent transport concept, to translate these into a concept
and to generate a rapid evaluation process by the user groups. Therefore, this
paper aims to demonstrate the application of the user-centered Design Thinking
method in the design of cabin for future air taxis. Based on the Design
Thinking approach and its iterative process steps, the direct implementation is
described on the combined airport shuttle and intracity UAM concept. The main
focus is on the identification of key user requirements by means of a focus
group study and the evaluation of initial cabin designs and key ideas by means
of an online survey. Consequently, the creative design process of a digital
prototype will be presented. In addition to an increased awareness and
acceptance among the population towards a novel mode of transportation, the
application of the Design Thinking methodology offers a flexible and
user-centered approach for further testing and simulation scenarios.Comment: 13 page
Chaperone-assisted translocation of a polymer through a nanopore
Using Langevin dynamics simulations, we investigate the dynamics of
chaperone-assisted translocation of a flexible polymer through a nanopore. We
find that increasing the binding energy between the chaperone and
the chain and the chaperone concentration can greatly improve the
translocation probability. Particularly, with increasing the chaperone
concentration a maximum translocation probability is observed for weak binding.
For a fixed chaperone concentration, the histogram of translocation time
has a transition from long-tailed distribution to Gaussian distribution with
increasing . rapidly decreases and then almost saturates with
increasing binding energy for short chain, however, it has a minimum for longer
chains at lower chaperone concentration. We also show that has a minimum
as a function of the chaperone concentration. For different , a
nonuniversal dependence of on the chain length is also observed.
These results can be interpreted by characteristic entropic effects for
flexible polymers induced by either crowding effect from high chaperone
concentration or the intersegmental binding for the high binding energy.Comment: 10 pages, to appear in J. Am. Chem. So
Dragging a polymer chain into a nanotube and subsequent release
We present a scaling theory and Monte Carlo (MC) simulation results for a
flexible polymer chain slowly dragged by one end into a nanotube. We also
describe the situation when the completely confined chain is released and
gradually leaves the tube. MC simulations were performed for a self-avoiding
lattice model with a biased chain growth algorithm, the pruned-enriched
Rosenbluth method. The nanotube is a long channel opened at one end and its
diameter is much smaller than the size of the polymer coil in solution. We
analyze the following characteristics as functions of the chain end position
inside the tube: the free energy of confinement, the average end-to-end
distance, the average number of imprisoned monomers, and the average stretching
of the confined part of the chain for various values of and for the number
of monomers in the chain, . We show that when the chain end is dragged by a
certain critical distance into the tube, the polymer undergoes a
first-order phase transition whereby the remaining free tail is abruptly sucked
into the tube. This is accompanied by jumps in the average size, the number of
imprisoned segments, and in the average stretching parameter. The critical
distance scales as . The transition takes place when
approximately 3/4 of the chain units are dragged into the tube. The theory
presented is based on constructing the Landau free energy as a function of an
order parameter that provides a complete description of equilibrium and
metastable states. We argue that if the trapped chain is released with all
monomers allowed to fluctuate, the reverse process in which the chain leaves
the confinement occurs smoothly without any jumps. Finally, we apply the theory
to estimate the lifetime of confined DNA in metastable states in nanotubes.Comment: 13pages, 14figure
Self-energy limited ion transport in sub-nanometer channels
The current-voltage characteristics of the alpha-Hemolysin protein pore
during the passage of single-stranded DNA under varying ionic strength, C, are
studied experimentally. We observe strong blockage of the current, weak
super-linear growth of the current as a function of voltage, and a minimum of
the current as a function of C. These observations are interpreted as the
result of the ion electrostatic self-energy barrier originating from the large
difference in the dielectric constants of water and the lipid bilayer. The
dependence of DNA capture rate on C also agrees with our model.Comment: more experimental material is added. 4 pages, 7 figure
Structure-function analysis of the RNA helicase maleless
Loss of function of the RNA helicase maleless (MLE) in Drosophila melanogaster leads to male-specific lethality due to a failure of X chromosome dosage compensation. MLE is presumably involved in incorporating the non-coding roX RNA into the dosage compensation complex (DCC), which is an essential but poorly understood requirement for faithful targeting of the complex to the X chromosome. Sequence comparison predicts several RNA-binding domains in MLE but their properties have not been experimentally verified. We evaluated the RNA-binding characteristics of these conserved motifs and their contributions to RNA-stimulated ATPase activity, to helicase activity, as well as to the targeting of MLE to the nucleus and to the X chromosome territory. We find that RB2 is the dominant, conditional RNA-binding module, which is indispensable for ATPase and helicase activity whereas the N-terminal RB1 motif does not bind RNA, but is involved in targeting MLE to the X chromosome. The C-terminal domain containing a glycine-rich heptad repeat adds potential dimerization and RNA-binding surfaces which are not required for helicase activity
- ā¦