5 research outputs found

    Polymorphisms in Cyclooxygenase, Lipoxygenase and TP53 genes predict colorectal polyp risk reduction by aspirin in the seAFOod polyp prevention trial

    Get PDF
    Aspirin and eicosapentaenoic acid (EPA) reduce colorectal adenomatous polyp risk and affect synthesis of oxylipins including prostaglandin E2. We investigated whether 35 single nucleotide polymorphisms (SNPs) in oxylipin metabolism genes such as cyclooxygenase [PTGS] and lipoxygenase [ALOX], as well as 7 SNPs already associated with colorectal cancer (CRC) risk reduction by aspirin (eg. TP53; rs104522), modified the effects of aspirin and EPA on colorectal polyp recurrence in the randomised 2x2 factorial seAFOod trial. Treatment effects were reported as the incidence rate ratio (IRR) and 95% confidence interval (CI) by stratifying negative binomial and Poisson regression analyses of colorectal polyp risk on SNP genotype. Statistical significance was reported with adjustment for the false discovery rate as the P and q value. Five hundred and forty-two (of 707) trial participants had both genotype and colonoscopy outcome data. Reduction in colorectal polyp risk in aspirin users compared with non-aspirin users was restricted to rs4837960 (PTGS1) common homozygotes (IRR 0.69 [95%CI 0.53,0.90]; q=0.06), rs2745557 (PTGS2) compound heterozygote-rare homozygotes (IRR 0.60 [0.41,0.88]; q=0.06), rs7090328 (ALOX5) rare homozygotes (IRR 0.27 [0.11,0.64]; q=0.05), rs2073438 (ALOX12) common homozygotes (IRR 0.57 [0.41,0.80]; q=0.05), and rs104522 (TP53) rare homozygotes (IRR 0.37 [0.17,0.79]; q=0.06). No modification of colorectal polyp risk in EPA users was observed. In conclusion, genetic variants relevant to the proposed mechanism of action on oxylipins are associated with differential colorectal polyp risk reduction by aspirin in individuals who develop multiple colorectal polyps. SNP genotypes should be considered during development of personalised, predictive models of CRC chemoprevention by aspirin

    Challenges and future perspectives for the life cycle of manufacturing networks in the mass customisation era

    Get PDF
    Manufacturers and service providers are called to design, plan, and operate globalised manufacturing networks, addressing to challenges of increasing complexity in all aspects of product and production life cycle. These factors, caused primarily by the increasing demand for product variety and shortened life cycles, generate a number of issues related to the life cycle of manufacturing systems and networks. Focusing on the aspects that affect manufacturing network performance, this work reviews the exiting literature around the design, planning, and control of manufacturing networks in the era of mass customisation and personalisation. The considered life cycle aspects include supplier selection, initial manufacturing network design, supply chain coordination, complexity, logistics management, inventory and capacity planning and management, lot sizing, enterprise resource planning, customer relationship management, and supply chain control. Based on this review and in correlation with the view of the manufacturing networks and facilities of the future, directions for the development of methods and tools to satisfy product-service customisation and personalisation are promoted
    corecore