4 research outputs found

    Interactive Causal Structure Discovery

    Get PDF
    Multiple algorithms exist for the detection of causal relations from observational data but they are limited by their required assumptions regarding the data or by available computational resources. Only limited amount of information can be extracted from finite data but domain experts often have some knowledge of the underlying processes. We propose combining an expert’s prior knowledge with data likelihood to find models with high posterior probability. Our high-level procedure for interactive causal structure discovery contains three modules: discovery of initial models, navigation in the space of causal structures, and validation for model selection and evaluation. We present one manner of formulating the problem and implementing the approach assuming a rational, Bayesian expert which assumption we use to model the user in simulated experiments. The expert navigates greedily in the structure space using their prior information and the structures’ fit to data to find a local maximum a posteriori structure. Existing algorithms provide initial models for the navigation. Through simulated user experiments with synthetic data and use cases with real-world data, we find that the results of causal analysis can be improved by adding prior knowledge. Additionally, different initial models can lead to the expert finding different causal models and model validation helps detect overfitting and concept drift

    Technical note: Incorporating expert domain knowledge into causal structure discovery workflows

    Get PDF
    In this note, we argue that the outputs of causal discovery algorithms should not usually be considered end results but rather starting points and hypotheses for further study. The incentive to explore this topic came from a recent study by Krich et al. (2020), which gives a good introduction to estimating causal networks in biosphere–atmosphere interaction but confines the scope by investigating the outcome of a single algorithm. We aim to give a broader perspective to this study and to illustrate how not only different algorithms but also different initial states and prior information of possible causal model structures affect the outcome. We provide a proof-of-concept demonstration of how to incorporate expert domain knowledge with causal structure discovery and remark on how to detect and take into account over-fitting and concept drift.Peer reviewe
    corecore