5 research outputs found

    DataSheet_1_Drivers of CO2-carbonate system variability in the coastal ocean south of Honolulu, Hawai’i.docx

    No full text
    This study examines carbonate chemistry variability from 2008 to 2021 in subtropical coastal waters adjacent to Honolulu, Hawai’i. We use surface seawater carbon dioxide partial pressure (pCO2sw) measurements obtained every three hours from two buoys located along the south shore of O’ahu near anthropogenically impacted fringing reefs. The Ala Wai buoy was located 200 m offshore of a canal draining most of Honolulu, while the Kilo Nalu buoy was 1.3 miles (2 km) to the northwest, at a similar distance from shore with fewer terrestrial inputs. We compare pCO2sw variability from diurnal to interannual time scales. A trend analysis reveals a statistically significant increase in pCO2sw of +1.84 ± 0.27 ”atm per year over the 11-year period. This rate is slightly lower than the average atmospheric growth rate observed during the same timeframe. In contrast to a nearby open-ocean site, the coastal sites experience amplified shorter-term variability, while seasonal to inter-annual variability is comparable to the open ocean. Ala Wai exhibits greater ranges than Kilo Nalu in all carbonate system variables due to its proximity to the Ala Wai Canal outflow. We examine the drivers that may explain both the similarities and contrasts in carbon dynamics observed between the two locations. Drivers of aragonite saturation state (ΩAr), an important variable for quantifying ocean acidification, are isolated from the in-situ time-series. Interannual salinity variations both due to freshwater pulses and large-scale regional salinity changes have a larger impact on ΩAr than temperature changes, which mostly have an effect seasonally. A large biological contribution to ΩAr is suspected, and further investigated using TA/DIC ratios normalized to median salinity and their slopes. Observed ratios at the south shore sites are evaluated relative to expected ratios derived from an open-ocean reference. Results suggest that dissolution and respiration are the primary biogeochemical processes occurring at these coastal sites. This highlights the significance of carbonate dissolution in anthropogenically impacted coastal waters, which is likely buffering acidification due to anthropogenic CO2 and freshwater inputs at these sites.</p

    Taking the metabolic pulse of the world’s coral reefs

    No full text
    <div><p>Worldwide, coral reef ecosystems are experiencing increasing pressure from a variety of anthropogenic perturbations including ocean warming and acidification, increased sedimentation, eutrophication, and overfishing, which could shift reefs to a condition of net calcium carbonate (CaCO<sub>3</sub>) dissolution and erosion. Herein, we determine the net calcification potential and the relative balance of net organic carbon metabolism (net community production; NCP) and net inorganic carbon metabolism (net community calcification; NCC) within 23 coral reef locations across the globe. In light of these results, we consider the suitability of using these two metrics developed from total alkalinity (TA) and dissolved inorganic carbon (DIC) measurements collected on different spatiotemporal scales to monitor coral reef biogeochemistry under anthropogenic change. All reefs in this study were net calcifying for the majority of observations as inferred from alkalinity depletion relative to offshore, although occasional observations of net dissolution occurred at most locations. However, reefs with lower net calcification potential (i.e., lower TA depletion) could shift towards net dissolution sooner than reefs with a higher potential. The percent influence of organic carbon fluxes on total changes in dissolved inorganic carbon (DIC) (i.e., NCP compared to the sum of NCP and NCC) ranged from 32% to 88% and reflected inherent biogeochemical differences between reefs. Reefs with the largest relative percentage of NCP experienced the largest variability in seawater pH for a given change in DIC, which is directly related to the reefs ability to elevate or suppress local pH relative to the open ocean. This work highlights the value of measuring coral reef carbonate chemistry when evaluating their susceptibility to ongoing global environmental change and offers a baseline from which to guide future conservation efforts aimed at preserving these valuable ecosystems.</p></div

    The dominant metabolic processes on coral reefs and their influence on seawater total alkalinity (TA), dissolved inorganic carbon (DIC), and pH.

    No full text
    <p>(A) The organic carbon cycle (NCP) is dominated by photosynthesis and respiration, which take up or release 1 mole of DIC for every mole of organic carbon (CH<sub>2</sub>O) produced or decomposed with little influence on seawater TA. In contrast, the inorganic carbon cycle (NCC) is dominated by CaCO<sub>3</sub> precipitation and dissolution, which alter TA and DIC in a ratio of 2:1 for every mole of CaCO<sub>3</sub> precipitated or dissolved. Photo credit: Yuna Zayasu, OIST. (B) Depending on the relative contribution from different metabolic processes, the resulting change in TA and DIC influences seawater pH differently (colored contours). Photosynthesis and CaCO<sub>3</sub> dissolution increase seawater pH while respiration and CaCO<sub>3</sub> precipitation decrease pH. If NCP and NCC are closely balanced (i.e., TA-DIC slope ~1), there is little change in seawater pH owing to net reef metabolism. This is because the slope of pH isolines within the normal oceanic concentration of seawater TA and DIC are close to 1. Therefore, when the slope of the TA-DIC vector is different from 1 the pH isolines are crossed and seawater pH can be altered considerably. The calculations for pH at each TA and DIC value assume constant temperature (25°C) and salinity (35). (C) Conceptual schematic of the biogeochemical and metabolic function of coral reefs. Net CaCO<sub>3</sub> precipitation (+NCC, green area) vs. net dissolution (-NCC, pink/red area); net autotrophy (+NCP) vs. net heterotrophy (-NCP), and different TA-DIC slopes, as well as the resulting changes in reef seawater pH (pH<sub>r</sub>) relative to the open ocean (pH<sub>o</sub>) under constant salinity and temperature conditions.</p
    corecore