6 research outputs found

    Photon-assisted tunneling at the atomic scale: Probing resonant Andreev reflections from Yu-Shiba-Rusinov states

    Full text link
    Tunneling across superconducting junctions proceeds by a rich variety of processes, which transfer single electrons, Cooper pairs, or even larger numbers of electrons by multiple Andreev reflections. Photon-assisted tunneling combined with the venerable Tien-Gordon model has long been a powerful tool to identify tunneling processes between superconductors. Here, we probe superconducting tunnel junctions including an impurity-induced Yu-Shiba-Rusinov (YSR) state by exposing a scanning tunneling microscope with a superconducting tip to microwave radiation. We find that a simple Tien-Gordon description describes tunneling of single electrons and Cooper pairs into the bare substrate, but breaks down for tunneling via YSR states by resonant Andreev reflections. We develop an improved theoretical description which is in excellent agreement with the data. Our results establish photon-assisted tunneling as a powerful tool to analyze tunneling processes at the atomic scale which should be particularly informative for unconventional and topological superconductors

    Diode effect in Josephson junctions with a single magnetic atom

    Get PDF
    Current flow in electronic devices can be asymmetric with bias direction, a phenomenon underlying the utility of diodes1 and known as non-reciprocal charge transport2. The promise of dissipationless electronics has recently stimulated the quest for superconducting diodes, and non-reciprocal superconducting devices have been realized in various non-centrosymmetric systems3,4,5,6,7,8,9,10. Here we investigate the ultimate limits of miniaturization by creating atomic-scale Pb–Pb Josephson junctions in a scanning tunnelling microscope. Pristine junctions stabilized by a single Pb atom exhibit hysteretic behaviour, confirming the high quality of the junctions, but no asymmetry between the bias directions. Non-reciprocal supercurrents emerge when inserting a single magnetic atom into the junction, with the preferred direction depending on the atomic species. Aided by theoretical modelling, we trace the non-reciprocity to quasiparticle currents flowing by means of electron–hole asymmetric Yu–Shiba–Rusinov states inside the superconducting energy gap and identify a new mechanism for diode behaviour in Josephson junctions. Our results open new avenues for creating atomic-scale Josephson diodes and tuning their properties through single-atom manipulation

    Diode effect in Josephson junctions with a single magnetic atom

    Full text link
    Current flow in electronic devices can be asymmetric with bias direction, a phenomenon underlying the utility of diodes and known as non-reciprocal charge transport. The promise of dissipationless electronics has recently stimulated the quest for superconducting diodes, and non-reciprocal superconducting devices have been realized in various non-centrosymmetric systems. Probing the ultimate limits of miniaturization, we have created atomic-scale Pb--Pb Josephson junctions in a scanning tunneling microscope. Pristine junctions stabilized by a single Pb atom exhibit hysteretic behavior, confirming the high quality of the junctions, but no asymmetry between the bias directions. Non-reciprocal supercurrents emerge when inserting a single magnetic atom into the junction, with the preferred direction depending on the atomic species. Aided by theoretical modelling, we trace the non-reciprocity to quasiparticle currents flowing via Yu-Shiba-Rusinov (YSR) states inside the superconducting energy gap. Our results open new avenues for creating atomic-scale Josephson diodes and tuning their properties through single-atom manipulation

    Photon-assisted resonant Andreev reflections:Yu-Shiba-Rusinov and Majorana states

    Get PDF
    Photon-assisted tunneling frequently provides detailed information on the underlying charge-transfer process. In particular, the Tien-Gordon approach and its extensions predict that the sideband spacing in bias voltage is a direct fingerprint of the number of electrons transferred in a single tunneling event. Here, we analyze photon-assisted tunneling into subgap states in superconductors in the limit of small temperatures and bias voltages where tunneling is dominated by resonant Andreev processes and does not conform to the predictions of simple Tien-Gordon theory. Our analysis is based on a systematic Keldysh calculation of the subgap conductance and provides a detailed analytical understanding of photon-assisted tunneling into subgap states, in excellent agreement with a recent experiment. We focus on tunneling from superconducting electrodes and into Yu-Shiba-Rusinov states associated with magnetic impurities or adatoms, but we also explicitly extend our results to include normal-metal electrodes or other types of subgap states in superconductors. In particular, we argue that photon-assisted Andreev reflections provide a high-accuracy method to measure small, but nonzero energies of subgap states which can be important for distinguishing conventional subgap states from Majorana bound states.Comment: 20 pages, 8 figure

    Manuskript-Titel: "Photon-assisted tunneling at the atomic scale: Probing resonant Andreev reflections from Yu-Shiba-Rusinov states"

    No full text
    Tunnelling across superconducting junctions proceeds by a rich variety of processes, which transfer single electrons, Cooper pairs or even larger numbers of electrons by multiple Andreev reflections. Photon-assisted tunnelling combined with the venerable Tien–Gordon model has long been a powerful tool to identify tunnelling processes between superconductors. Here, we probe superconducting tunnel junctions including an impurity-induced Yu–Shiba–Rusinov (YSR) state by exposing a scanning tunnelling microscope with a superconducting tip to microwave radiation. We find that a simple Tien–Gordon description describes tunnelling of single electrons and Cooper pairs into the bare substrate, but breaks down for tunnelling via YSR states by resonant Andreev reflections. We develop an improved theoretical description that is in excellent agreement with the data. Our results establish photon-assisted tunnelling as a powerful tool to analyse tunnelling processes at the atomic scale, which should be particularly informative for unconventional and topological superconductors

    Original experimental data and code for the Paper "Diode effect in Josephson junctions with a single magnetic atom"

    No full text
    Current flow in electronic devices can be asymmetric with bias direction, a phenomenon underlying the utility of diodes and known as non-reciprocal charge transport. The promise of dissipationless electronics has recently stimulated the quest for superconducting diodes, and non-reciprocal superconducting devices have been realized in various non-centrosymmetric systems. Here, we probe the ultimate limits of miniaturization by creating atomic-scale Pb--Pb Josephson junctions in a scanning tunneling microscope. Pristine junctions stabilized by a single Pb atom exhibit hysteretic behavior, confirming the high quality of the junctions, but no asymmetry between the bias directions. Non-reciprocal supercurrents emerge when inserting a single magnetic atom into the junction, with the preferred direction depending on the atomic species. Aided by theoretical modelling, we trace the non-reciprocity to quasiparticle currents flowing via electron-hole asymmetric Yu-Shiba-Rusinov (YSR) states inside the superconducting energy gap and identify a new mechanism for diode behavior in Josephson junctions. Our results open new avenues for creating atomic-scale Josephson diodes and tuning their properties through single-atom manipulation
    corecore