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Photon-assisted tunneling frequently provides detailed information on the underlying charge-
transfer process. In particular, the Tien-Gordon approach and its extensions predict that the side-
band spacing in bias voltage is a direct fingerprint of the number of electrons transferred in a single
tunneling event. Here, we analyze photon-assisted tunneling into subgap states in superconductors
in the limit of small temperatures and bias voltages where tunneling is dominated by resonant An-
dreev processes and does not conform to the predictions of simple Tien-Gordon theory. Our analysis
is based on a systematic Keldysh calculation of the subgap conductance and provides a detailed an-
alytical understanding of photon-assisted tunneling into subgap states, in excellent agreement with
a recent experiment. We focus on tunneling from superconducting electrodes and into Yu-Shiba-
Rusinov states associated with magnetic impurities or adatoms, but we also explicitly extend our
results to include normal-metal electrodes or other types of subgap states in superconductors. In
particular, we argue that photon-assisted Andreev reflections provide a high-accuracy method to
measure small, but nonzero energies of subgap states which can be important for distinguishing
conventional subgap states from Majorana bound states.

I. INTRODUCTION

At subgap temperatures and voltages, charge transfer
between conventional superconductors typically occurs
by multi-electron processes. Transfer of Cooper pairs
is responsible for Josephson currents flowing between
superconductors [1] and leaves the superconductors in
their ground state. Cooper pairs can also be extracted
from, injected into, or transferred between superconduc-
tors with the simultaneous generation of quasiparticles
[2, 3]. In these processes – termed multiple Andreev re-
flections – electrons impinging on one of the supercon-
ducting electrodes are reflected as holes, while a Cooper
pair is transmitted into the superconductor. As a result,
one or several Cooper pairs are transferred between the
superconductors while generating a pair of quasiparticles
[2, 4–6].

At subgap voltages, single-electron transmission is pos-
sible only due to thermally excited quasiparticles. In
tunnel junctions, these processes can compete with two-
electron tunneling since the latter are of higher or-
der in the tunneling amplitude and hence exponen-
tially suppressed. The interplay of single-electron and
two-electron tunneling can be elucidated in scanning-
tunneling-spectroscopy experiments where the junction
resistance is readily changed by orders of magnitude,
thereby tuning the relative importance of these two tun-
neling processes. In a recent experiment [7], this was
done for a system in which tunneling was resonantly en-
hanced by in-gap Yu-Shiba-Rusinov (YSR) states associ-
ated with a magnetic adatom. Single-electron tunneling
dominated for large tip-substrate distances, where tun-
neling processes are slow compared to inelastic processes
coupling the YSR state to the quasiparticle continuum.

In contrast, the tunnel current was predominantly car-
ried by two-electron processes at smaller tip-substrate
distances where the tunneling processes are fast. These
resonant two-electron processes – which we term resonant
Andreev reflections, see Fig. 1 – transfer a Cooper pair
into the substrate while generating a pair of quasiparti-
cles in the tip. The nature of these processes was further
elucidated by a subsequent experiment [8] which aimed
at distinguishing single-electron and two-electron tunnel-
ing through YSR states by means of photon-assisted tun-
neling in the presence of high-frequency (HF) radiation
[9]. Here, we develop a comprehensive theory of the tun-
neling processes as well as the resulting intriguing and
nontrivial patterns of photon-assisted sidebands.

Photon-assisted tunneling constitutes a powerful
method to probe the nature of charge transfer. The ab-
sorption and emission of photons leads to the appear-
ance of sidebands in the conductance both in the absence
[10, 11] and in the presence [12–17] of Coulomb blockade.
Frequently, the spacing of the sidebands in bias voltage
as well as their modulation as a function of the amplitude
of the HF radiation directly reveal the amount of charge
that is transferred in an elementary tunneling event [18].
The theory of such processes goes back to the classic
work of Tien and Gordon [19], and their early results
on single-electron transfer between superconductors has
been extended in multiple directions. In many situations,
one finds Tien-Gordon-like relations

G(V ) =
∑

n

J2
n

(

keVHF

~Ω

)

G(0)(V + n~Ω/ke), (1)

which express the junction conductance G(V ) = dI/dV
in the presence of HF irradiation in terms of the junc-
tion conductance G(0)(V ) without HF radiation. Here,
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k denotes the number of electrons transferred in an ele-
mentary tunneling event, Ω is the frequency of the HF
radiation, and VHF its amplitude. The conductance is
a sum over sidebands spaced in bias voltage by ~Ω/ke,
whose strength is controlled by the Bessel functions Jn.
The oscillations of the Bessel functions as a function of
their argument imply a characteristic modulation of the
sideband intensity as a function of VHF.

Such relations have been shown to describe not only
photon-assisted sidebands of the coherence peaks [19],
but also incoherent Josephson tunneling near zero bias
[20] or multiple Andreev reflections [21]. In the context
of scanning-tunneling-microscopy (STM) experiments,
these Tien-Gordon expressions were found to describe
the sidebands of the coherence peaks [8, 22], the Joseph-
son peak [8, 11, 22], as well as multiple Andreev peaks
[8, 22]. To understand these relations, it is convenient
to measure energies in both source and drain from the
respective chemical potentials. In this representation,
the Hamiltonian HT describing tunneling from source to
drain involves a time-dependent phase factor (see Sec. III
for details)

e−iφ(τ) = e−i{ eV

~
τ+

eVHF

~Ω
sin Ωτ}, (2)

which accounts for the change in energy of the tunneling
electrons due to the voltage bias across the junction. The
amplitude for transferring multiple electrons can be ob-
tained from higher-order terms in the Born series for the
T -matrix, T = HT + HTG0HT + . . .. While in general,
the unperturbed Green function G0 is nonlocal in time,
it is effectively local on the scale of Ω−1 when the energy
of the virtual intermediate states is large compared to
the energy transfer from the HF radiation. In this case,
the factors of e−iφ(τ) from the various tunneling terms
simply combine into a single factor e−ikφ(τ), and a sim-
ple Fermi golden rule calculation leads to Eq. (1). This
argument applies to incoherent Cooper pair tunneling as
well as multiple Andreev reflections for plain supercon-
ducting electrodes as long as ~Ω, eVHF ≪ ∆.

It is clear that this reasoning does not extend to res-
onant Andreev reflections via YSR states where the am-
plitude for tunneling is sharply peaked in energy due to
the bound state. Indeed, we find that photon-assisted
resonant Andreev reflections exhibit rich physics that is
qualitatively different from the Tien-Gordon-like expres-
sion (1). Moreover, while in many cases, the tunneling
between superconductors can be described in low-order
perturbation theory in the tunneling Hamiltonian, this
is generally not the case for resonant Andreev reflections
[7]. This is because the broadening of the bound-state
resonance can be dominated by the tip-substrate tun-
neling, thus requiring one to treat tunneling to all or-
ders in perturbation theory. We show that nevertheless,
one can develop an analytical theory for photon-assisted
resonant Andreev reflections. Our theory is in excellent
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Figure 1. Resonant Andreev reflections via YSR bound
states in superconductor-superconductor junctions at thresh-
old (schematic, no high-frequency radiation). (a) For positive
bias voltages, an electron (blue) tunnels from the coherence
peak of the source (tip) into the positive-energy YSR state,
which then forms a Cooper pair with another electron while
creating a hole (red) in the negative-energy YSR state. Fi-
nally, the hole tunnels back into the source. (b) For negative
bias voltages, a hole tunnels from the coherence peak of the
drain (tip) into the negative-energy YSR state. A Cooper pair
breaking up in the source (substrate) will then compensate
the hole and occupy the positive-energy YSR state, followed
by electron tunneling into the drain (tip). The processes at
positive and negative bias both create a pair of quasiparticles
in the tip (left superconductor) and generate or break up a
Cooper pair in the substrate (right superconductor).

agreement with a recent experiment [8] on tunnel junc-
tions formed between a superconducting substrate with
a magnetic adatom and a superconducting STM tip.

Resonant Andreev reflections are an important tunnel-
ing process not only for YSR states, but also for other
subgap states in superconductors. In particular, they
dominate tunneling into Majorana bound states, where
they are predicted to lead to a universal zero-bias con-
ductance of 2e2/h for tunneling from a normal-metal lead
[23, 24]. This has been at the focus of a large number
of experiments [25] and a recent measurement shows ev-
idence for this quantized conductance [26]. Our theory
for photon-assisted resonant Andreev reflections is read-
ily adapted to include tunneling into Majorana bound
states [17, 28], and we find that photon-assisted tunneling
can be an important tool to differentiate Majorana bound
states from other subgap states. This is particularly true
for tunneling from superconducting tips which were re-
peatedly used for improved resolution in Majorana exper-
iments on chains of magnetic adatoms [29–32]. Since tun-
neling into a Majorana bound state leaves behind an un-
paired electron in the superconducting tip, it leads to two
symmetric Majorana peaks at bias voltages eV = ±∆,
where ∆ denotes the superconducting gap of the tip [33].
This should be contrasted with tunneling into a conven-
tional subgap state with a small, but nonzero energy
ǫ0, which appears as differential-conductance peaks at
eV = ±(∆ + ǫ0). Thus, the small energy of the subgap
state can only be extracted from experiment as a dif-
ference of two much larger energies, the position of the
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resonance peak in dI/dV and the superconducting gap
of the tip. This is inherently prone to errors and requires
an accurate determination of the tip gap. We find that
in photon-assisted tunneling, the subgap energy appears
directly as a spacing between resonant peaks in the spec-
trum, even for a superconducting tip. Moreover, these
splittings appear in differential-conductance maps with
high multiplicity, which effectively enhances the ability
to resolve closely-spaced peaks.

Building on a brief review of subgap tunneling pro-
cesses between pristine superconductors in Sec. II A,
we begin in Sec. II B with a summary of our cen-
tral results and the basic physical picture for photon-
assisted resonant Andreev reflections via YSR states in
superconductor-superconductor junctions. The model
and some basic formalism for tunneling between super-
conductors are set up in Sec. III. Our central analyti-
cal results for photon-assisted resonant Andreev reflec-
tions are then derived in Sec. IV. We first discuss a di-
agonal approximation in Sec. IV A which is in excellent
agreement with experiment and exact theoretical results,
and apply this approach to photon-assisted resonant An-
dreev reflections in junctions of normal metals and su-
perconductors with YSR state (Sec. IV A 2) as well as
superconductor-superconductor junctions (Sec. IV A 3),
giving a firm theoretical basis to the physical discussion
in Sec. II. We then derive and discuss the exact solution
in Sec. IV B. While the bulk of the paper is concerned
with YSR states, many results carry over rather directly
to Majorana bound states, as discussed in Sec. V. We
conclude in Sec. VI.

II. PHYSICAL DISCUSSION

Before embarking on the detailed technical derivation
of the photon-assisted tunneling current, we begin with
a physical discussion. We include a review of standard
results for tunnel junctions between superconductors to
provide a backdrop for resonant Andreev reflections in
junctions with YSR states. A corresponding discussion of
resonant Andreev reflections via Majorana bound states
can be found in Sec. V.

A. Review of photon-assisted tunneling processes

between pristine superconductors

Single-electron tunneling between superconductors
leaves behind an unpaired electron in the source and in-
jects an unpaired electron into the drain. Each of these
electrons requires a minimal excitation energy equal to
the superconducting gap ∆ (assumed equal for source
and drain superconductors for simplicity). Thus, single-
electron tunneling becomes possible at voltages e|V | >
2∆. The BCS singularity of the superconducting den-

sity of states leads to coherence peaks in the differential
conductance at the threshold voltages eV = ±2∆. In
the presence of an ac field with frequency Ω, the tun-
neling electrons not only gain energy eV due to the bias
voltage, but also emit or absorb photons [34]. Then, the
threshold condition for single-electron tunneling becomes
eV +n~Ω = ±2∆, where the integer n is positive for pho-
ton absorption and negative for photon emission, and one
obtains a set of coherence peaks displaced in voltage by
multiples of the photon energy ~Ω/e [10, 19]. The num-
ber of emitted or absorbed photons per tunneling event
is bounded by the maximal energy eVHF that the tunnel-
ing electrons can exchange with the ac field, where VHF

denotes the amplitude of the ac bias across the junction.
This implies that coherence-peak sidebands are limited
to |n| . nmax = eVHF/~Ω and thus observable in the
voltage range 2∆ − eVHF . e|V | . 2∆ + eVHF.

Current can also flow at subgap voltages due to multi-
ple Andreev reflections. Electrons with subgap energies
impinging on the source or drain superconductor are re-
flected as holes, with a Cooper pair transferred into the
superconductor (or vice versa). Then, the required ex-
citation energy of 2∆ for the two generated quasiparti-
cles can be acquired in the course of multiple traversals
across the junction, and the threshold condition becomes
meV = 2∆, where the (positive) integer m denotes the
number of junction traversals and thus the number of
electrons transmitted into the drain superconductor. In
the presence of the ac field, photons can be emitted or
absorbed in the tunneling process, and the threshold con-
dition becomes meV + n~Ω = 2∆. The spacing of the
photon sidebands in voltage is then given by ~Ω/me and
directly reflects the number of transferred electrons per
tunneling process. Specifically, the lowest multiple An-
dreev process with m = 2 has a threshold voltage of
eV = ∆ without ac field, transmits a Cooper pair into
the drain, and has sidebands with a voltage spacing of
~Ω/2e [8, 22, 35].

In the vicinity of zero bias, current flow between su-
perconductors occurs via Cooper pair tunneling. This
leads to a zero-bias peak in the differential conductance,
reflecting that Cooper pair tunneling does not excite ei-
ther of the superconducting electrodes [36]. The ac field
splits this Josephson peak into sidebands. The Cooper
pairs gain an energy 2eV due to the applied bias and n~Ω
due to the photon field. Thus, these sidebands occur at
eV = n~Ω/2, exhibiting half the spacing in bias voltage
compared to single-electron processes and the same spac-
ing as the m = 2 Andreev processes [37]. The tunneling
Cooper pairs change their energy at most by 2eVHF due
to the ac field. Consequently, the Josephson peaks are
limited to |n| . nmax = 2eVHF/~Ω and visible in the
voltage range −eVHF . eV . eVHF [8, 11, 14, 22, 38].

At nonzero temperatures, there are additional single-
electron processes even at subgap voltages which origi-
nate from thermally excited quasiparticles. The latter
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lead to a peak in the differential conductance when the
coherence peaks of the two superconductors align. This
causes a zero-bias peak when source and drain have gaps
of the same magnitude, and more generally a peak at
eV = ±|∆1 −∆2|, when the superconductors have differ-
ent gaps [39, 40].

B. Resonant Andreev processes via YSR states

Magnetic adatoms induce bound states – known as
YSR states [41–44] – within the superconducting gap
which can be individually probed by scanning tunneling
spectroscopy [40, 44–48]. The YSR states induce addi-
tional resonances in the tunneling conductance at subgap
voltages e|V | < 2∆. At zero temperature, the subgap
current cannot be carried by single electrons. Due to the
absence of bulk states at these energies, single electrons
cannot leave the junction region. Instead, the dominant
current-carrying process is an Andreev process closely
related to the lowest multiple Andreev process discussed
above with m = 2 [7, 49–53]. This process – termed res-
onant Andreev reflection – is best viewed as a (coherent)
multistep process. First consider the situation when elec-
trons are tunneling from the tip into the substrate (posi-
tive bias voltage, see Fig. 1(a) for a schematic representa-
tion). In this case, the tunneling amplitude involves the
following steps. An electron from the tip initially tun-
nels into the positive-energy YSR state. Subsequently,
the electron combines with an electron in the substrate
to form a Cooper pair, allowing the charge to exit the
junction region and leaving behind a hole in the negative-
energy YSR state. Finally, this hole tunnels back into the
tip.

This process must satisfy two conditions to be energet-
ically allowed, one each for electron and hole [7, 8]. The
electron tunneling process virtually occupies the YSR
state of energy ǫ0 and leaves an unpaired electron be-
hind in the tip, and is thus allowed when eV > ∆ + ǫ0.
The hole tunneling process injects a hole into the quasi-
particle continuum and thus requires eV > ∆ − ǫ0. Since
ǫ0 > 0, the condition for hole tunneling is automatically
satisfied whenever the condition for electron tunneling is
met. Thus, resonant Andreev reflection induces a peak
in the differential conductance at the threshold bias volt-
age eV = ∆ + ǫ0 of electron tunneling. In contrast, there
is no peak at the hole threshold eV = ∆ − ǫ0 since the
electron process is not yet energetically allowed.

In the presence of an ac field, both the electron and the
hole can emit or absorb photons during tunneling, cf. Fig.
2, and the energetic conditions become eV > ∆+ǫ0+n~Ω
for the electron and eV > ∆ − ǫ0 + m~Ω for the hole.
Correspondingly, there are two sets of sidebands in the
differential conductance, one at eV = ∆+ǫ0+n~Ω due to
the condition for electron tunneling and another at eV =
∆ − ǫ0 + m~Ω due to the condition for hole tunneling.
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Figure 2. Photon-assisted resonant Andreev reflections via
YSR bound states in superconductor-superconductor junc-
tions (schematic). Panel (a) shows the process for positive
bias voltages, panel (b) for negative biases. The basic process
is as in Fig. 1. The high-frequency radiation (frequency Ω)
allows electrons and holes to change their energy by multiples
of ~Ω. The number of relevant sidebands is limited by the
maximal energy eVHF that the tunneling electrons and holes
can gain or lose due to the high-frequency field and therefore
grows linearly in VHF.

Electron and hole can both gain or lose a maximal energy
of eVHF due to the ac field. Thus, the electron sidebands
are restricted to the voltage region

∆ + ǫ0 − eVHF . eV . ∆ + ǫ0 + eVHF, (3)

and the hole sidebands to

∆ − ǫ0 − eVHF . eV . ∆ − ǫ0 + eVHF. (4)

These V-shaped regions are indicated in Fig. 3 as dashed
(electrons) and dotted (holes) lines. The sidebands are
observable only as long as both electron and hole tun-
neling are allowed. For positive bias, this limits them
to the voltage range (3) for electron sidebands. Within
this region, only electron sidebands are observed for
eV > ∆ − ǫ0 + eVHF, i.e., outside the dotted V shape
for hole sidebands. Both electron and hole sidebands
contribute for eV < ∆− ǫ0 +eVHF, which corresponds to
the region lying within both dashed and dotted V shapes.

At negative bias voltages, there is a corresponding
process in which a hole tunnels from the tip into the
negative-energy YSR state, a Cooper pair breaks up and
occupies both YSR states at positive and negative en-
ergies, and finally, an electron tunnels back from the
positive-energy YSR state into the tip, see Fig. 1(b). In
this process, the hole sidebands are limited to the region

−(∆ + ǫ0 + eVHF) . eV . −(∆ + ǫ0 − eVHF), (5)

while electron sidebands can appear in the region

−(∆ − ǫ0 + eVHF) . eV . −(∆ − ǫ0 − eVHF). (6)

In the absence of high-frequency radiation, it is now
the electron process that is above threshold whenever
the hole process is, and sidebands can only be observed
within the hole region given by Eq. (5).
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Figure 3. Differential conductance (color scale) as a function of bias voltage eV and amplitude eVHF of the high-frequency
radiation for tunneling from a superconducting tip into a YSR state via resonant Andreev reflections. The panels differ in the
ratio between electron and hole wavefunctions u and v (left to right) and in the ratio between YSR state energy ǫ0 and photon
energy ~Ω (top to bottom). Numerical values are indicated in the figure. These results are obtained for u2 + v2 fixed to the
same value for all panels. The regions with electron and hole sidebands (see Eqs. (3) and (6) as well as (4) and (5), respectively)
are indicated by white dashed and dotted V-shapes, respectively, centered at e|V | = ∆± = ∆ ± ǫ0. Notice the appearance
of V and Y-shaped regions, as highlighted in panel (c1). For a detailed discussion, see Sec. II B. Parameters: Ω/∆ = 0.05,
ν0|t| = 0.04.

Based on our full theoretical results (see Sec. IV), Fig.
3 exhibits the differential conductance as a function of
both bias voltage V and amplitude VHF of the ac field.
From top to bottom, the panels differ in the ratio be-
tween YSR energy ǫ0 and photon energy ~Ω. From left
to right, the panels differ in the ratio between electron
and hole wavefunctions u and v, respectively, evaluated
at the tip position. First consider the column of central
panels for equal amplitudes of electron and hole wave-
functions, |u|2 = |v|2. The differential conductance ex-
hibits pronounced V-shapes centered at eV = ±(∆+ ǫ0).
At positive bias, this V-shape reflects the region with
electron sidebands given in Eq. (3), at negative biases

the region with hole sidebands given in Eq. (5).

These panels also show clear evidence for the impor-
tance of both the electron and the hole condition. The
panels in Fig. 3 delineate the V-shaped regions both
for electron tunneling (dashed white lines) and for hole
tunneling (dotted white lines). The sideband structure
within the outer V-shaped regions differs markedly be-
tween the overlap region of the two V-shapes and the
region outside the inner V-shape. Generically, one ob-
serves a larger number of sidebands within the overlap re-
gion where both electron and hole thresholds contribute.
Only when 2ǫ0 is commensurate with ~Ω, electron and
hole thresholds coincide and the sidebands in the overlap
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region appear brighter, but not more numerous.

Strikingly, the inner arms of the V-shapes appear more
pronounced than the outer ones. This can be understood
as follows. The sidebands appear brighter in the differ-
ential conductance, if the YSR resonance is sharp. The
width of the YSR resonance is controlled by the electron
and hole tunneling rates. Along the inner arm, one of the
tunneling processes is just barely setting in, so that the
width is considerably smaller than along the outer arm,
where both electron and hole tunneling are fully allowed.

The patterns depend strongly on the ratio between
electron and hole wavefunctions. Consider now the left-
most column of panels in Fig. 3, for which the hole wave-
function is considerably larger than the electron wave-
function, |u|2 = |v|2/9. While one still observes a V-
shaped region of sidebands for positive bias voltages, the
region takes on a Y-shape for negative biases. Since the
hole wavefunction is much larger, hole tunneling rates are
intrinsically larger than electron tunneling rates. In this
case, electron tunneling is effectively the rate-limiting
process (see Sec. IV A 3 for a careful discussion of this
statement) and electron thresholds are considerably more
pronounced than hole thresholds. Thus, sidebands are
only observed within the overlap region. The only ex-
ception is the “stem” of the Y-shape along which hole
tunneling just sets in and is still comparable in magni-
tude to electron tunneling. The situation is analogous in
the rightmost column in Fig. 3, for which the electron
tunneling rate is typically much larger than the hole tun-
neling rate and a (reflected) Y-like shape now appears at
positive bias voltages.

Since one set of sidebands dominates for strongly asym-
metric electron and hole wavefunctions, the sidebands no
longer depend sensitively on the commensurability be-
tween 2ǫ0 and ~Ω, but appear with a regular voltage spac-
ing of ~Ω. In view of the simple Tien-Gordon relation in
Eq. (1), this seemingly suggests that the underlying tun-
neling process is a single-electron process. Nevertheless,
resonant Andreev reflections transfer electron pairs into
the substrate superconductor and should be viewed as a
single coherent process. This emphasizes that photon-
assisted resonant Andreev reflections do not conform to
the predictions of a simple Tien-Gordon approach.

III. MODEL

We consider a junction involving a superconducting
tip and substrate (or other kinds of superconducting
electrodes) with Hamiltonians H̃L and H̃R, respectively.
Electrons can tunnel between tip and substrate as de-
scribed by the tunneling Hamiltonian

H̃T =
∑

σ

[

tc†
L,σ(R)cR,σ(R) + h.c.

]

, (7)

(a)

U(τ)t

Γe

Γh

eV = ∆+ ǫ0

(b)

te
iφ(τ)

Γe

Γh

eV = ∆+ ǫ0

Figure 4. Alternative representations of electron and hole
tunneling in the presence of a bias voltage: (a) Left and right
superconductors have chemical potentials which are shifted
relative to one another by the applied bias voltage eV . In
this representation, tunneling is horizontal, leaving the en-
ergy unchanged. (b) Alternatively, a time-dependent unitary
transformation, see Eq. (11), shifts the chemical potentials of
left and right superconductor such that they become equal,
and tunneling of electrons and holes is associated with an
energy transfer equal to eV . We use the representation in
panel (a) for figures, but the calculations (and their descrip-
tion) are systematically performed using the representation
in panel (b).

where c†
α,σ(r) creates an electron at position r and spin

σ in the tip (α = L) or the substrate (α = R) and R

denotes the position of the tip. The Hamiltonian

H̃ = H̃L + H̃R + H̃T (8)

measures energy on an absolute scale and conserves
the total particle number N = NL + NR. The time-
dependent bias V (τ) between tip and substrate is in-
cluded by holding tip and substrate at different chemical
potentials µL and µR,

eV (τ) = µL − µR, (9)

and is the sum of an applied dc voltage V and an ac
voltage

Vac(τ) = VHF cos(Ωτ) (10)

generated by the radiation field of frequency Ω [19].
To apply the usual BCS mean-field description of the

superconducting tip and substrate, we perform a time-
dependent canonical transformation (setting ~ = 1)

U(τ) = exp{i
∫ τ

0

dτ ′[µL(τ ′)NL + µR(τ ′)NR]}, (11)

so that single-particle energies in tip and substrate are
measured from the respective chemical potentials µL and
µR. The transformed Hamiltonian H = UH̃U† −iU∂τU

†

takes the form

H = (H̃L − µLNL) + (H̃R − µRNR) + UH̃TU
†. (12)
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Here, we used that H̃L and H̃R conserve NL and NR,
so that UH̃αU

† = H̃α. Then, the time dependence en-
ters only through the transformed tunneling Hamiltonian
HT = UH̃TU

† with

HT =
∑

σ

[

teiφ(τ)c†
L,σ(R)cR,σ(R) + h.c.

]

, (13)

where the tunneling amplitude t acquires a time-
dependent phase

φ(τ) = eV τ +
eVHF

Ω
sin(Ωτ) (14)

as a result of the canonical transformation. While the
time-independent H̃T conserves the energy of the tun-
neling electron or hole, the time-dependent HT changes
the energy due to both, the applied dc and ac biases.
This corresponds to different representations of the same
tunneling process as illustrated in Fig. 4.

In the transformed Hamiltonian, we can now make
the usual BCS mean field approximation for both HL =
H̃L − µLNL and HR = H̃R − µRNR. The unperturbed
Hamiltonian H0 = HL +HR can then be written as

H0 =
∑

k,α

∑

σ

[

ξk,αc
†
α,kσcα,kσ +

(

∆c†
α,k↑c

†
α,−k↓ + h.c.

)

]

+
∑

k,k′

∑

σ

(K − JSσ)c†
R,kσcR,k′σ, (15)

where ξk,α = ǫk −µα denotes the normal-state dispersion

for lead α = L,R and c†
α,kσ creates an electron with mo-

mentum k. The superconducting gap ∆ is taken to be
identical for tip and substrate. A magnetic adatom with
spin S is located at the origin and modeled as a classical
impurity which couples to the substrate electrons via po-
tential scattering of strength K and exchange coupling
J . The spin quantization axis of the electrons is chosen
parallel to the impurity spin.

The current operator I = −eṄL takes the form

I = −ie[HT , NL]

= ie
∑

σ

(

teiφ(τ)c†
L,σ(R)cR,σ(R) − h.c.

)

(16)

and the current becomes

I(τ) = eTr

{

τz

[

t̂(τ)G<
RL(τ, τ) −G<

LR(τ, τ)t̂∗(τ)
]

}

.

(17)
Here, we have expressed the expectation values in terms
of the lesser Green function in Nambu space,

G<
αβ(τ1, τ2) = i

(

〈c†
β↑(τ2)cα↑(τ1)〉 〈cβ↓(τ2)cα↑(τ1)〉

〈c†
β↑(τ2)c†

α↓(τ1)〉 〈cβ↓(τ2)c†
α↓(τ1)〉

)

,

(18)
introduced the hopping matrix

t̂(τ) =

(

teiφ(τ) 0
0 −t∗e−iφ(τ)

)

, (19)

and used the Pauli matrix τz in Nambu space. Here
and in the following, electron operators (as well as Green
functions and self energies) without momentum or posi-
tion labels refer to the tip position R.

Writing Dyson equations for the Keldysh Green func-
tion and using the Langreth rules, the lesser Green func-
tions can be written as

G<
LR = (gLt̂GR)< = g<

L t̂G
a
R + gr

Lt̂G
<
R

G<
RL = (GRt̂

∗gL)< = G<
R t̂

∗ga
L +Gr

Rt̂
∗g<

L .
(20)

The superscripts r and a denote retarded and advanced
Green functions. The bare Green function (in Nambu
space) of tip or substrate in the absence of tunneling is
denoted as gα (α = L,R), while the Green function of the
substrate which accounts for the tip-substrate tunneling
through a self energy

ΣR(τ, τ ′) = t̂∗(τ)gL(τ, τ ′)t̂(τ ′) (21)

takes the form GR = [g−1
R − ΣR]−1.

Inserting Eqs. (20) into the expression (17) for the cur-
rent, we find

I(τ) = e

∫

dτ ′ Tr
{

τz

[

G<
R(τ, τ ′)Σa

R(τ ′, τ)

+Gr
R(τ, τ ′)Σ<

R(τ ′, τ) − Σ<
R(τ, τ ′)Ga

R(τ ′, τ)

−Σr
R(τ, τ ′)G<

R(τ ′, τ)
]

}

. (22)

Here, we used that the hopping matrix t̂ commutes with
τz.

IV. RESONANT ANDREEV REFLECTIONS

While the YSR states resonantly enhance Andreev pro-
cesses in the substrate, no such enhancement occurs for
Andreev reflections in the tip. For this reason, we effec-
tively neglect the latter. In this approximation, there are
no multiple Andreev reflections, and the dominant pro-
cesses contributing to the subgap conductance involve a
single resonant Andreev reflection in the substrate. We
can implement this approximation by neglecting the off-
diagonal contributions to the Nambu Green function gL

of the tip when computing the self energy ΣR. In this
approximation, gL is proportional to the unit matrix (see
App. A for details).

To compute the self energy ΣR within this approxima-
tion, we note that

eiφ(τ) =

∞
∑

n=−∞
Jn

(

eVHF

Ω

)

ei(eV +nΩ)τ , (23)

where Jn(x) denotes a Bessel function. Inserting this into
Eq. (21), we obtain

ΣR(τ, τ ′) = |t|2
∑

n,m

Jn

(

eVHF

Ω

)

Jm

(

eVHF

Ω

)

×e−i(eV +nΩ)ττzgL(τ − τ ′)ei(eV +mΩ)τ ′τz . (24)
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This expression can be viewed as a sum of a diagonal
(n = m) and an off-diagonal (n 6= m) contribution,

ΣR = Σ0
R + Σ1

R (25)

with

Σ0
R(τ, τ ′) = |t|2

∑

n

J2
n(eVHF/Ω)

×e−i(eV +nΩ)ττzgL(τ − τ ′)ei(eV +nΩ)τ ′τz . (26)

The calculation simplifies significantly when retaining
only the diagonal self energy Σ0

R. We find that this is fre-
quently an excellent approximation. For this reason, we
first discuss this simplified situation (referred to below
as diagonal approximation) before presenting the more
general case.

A. Diagonal approximation

1. Derivation

Within the diagonal approximation, the self energy is
only a function of the difference τ − τ ′ of its time ar-
guments and thus diagonal in frequency representation.
Then, the exponential factors in Eq. (26) effectively act
as translation operators and we obtain

Σ0
R(ω) = |t|2

∑

n

J2
n(eVHF/Ω)gL(ω−(eV +nΩ)τz). (27)

Here, the frequency argument of the Green function gL

reflects that due to bias voltage and ac field, electrons
(holes) propagating in the substrate lose (gain) an energy
eV + nΩ when tunneling into the tip.

As we are considering subgap energies in the substrate,
we only retain the contribution to the substrate Green
function which originates from the YSR state with energy
ǫ0. Then, the retarded and advanced Green functions
become (see App. B for details)

G
r/a
R (ω) = ψ

1

ω − ǫ0 − Λ(ω) ± i
2 Γ(ω)

ψ†. (28)

Here, ψT = (u, v) denotes the Bogoliubov-deGennes
wavefunction of the positive-energy YSR state at the tip
position R and we separated the retarded and advanced
self energy projected onto the YSR state

Σ̃
0,r/a
R (ω) = ψ†Σ0

R(ω)ψ = Λ(ω) ∓ i

2
Γ(ω) (29)

into real and imaginary parts.
The projected self energy takes the explicit form

Σ̃0
R(ω) = |t|2

∑

n

J2
n(eVHF/Ω)

×
{

|u|2gL(ω−(eV +nΩ)) + |v|2gL(ω+(eV +nΩ))
}

.(30)

Using Eq. (A8) in App. A, the imaginary part Γ(ω) is
given by

Γ(ω) =
∑

n

J2
n(eVHF/Ω)

×[Γe(ω−(eV +nΩ)) + Γh(ω+(eV +nΩ))], (31)

which combines contributions to the broadening of the
YSR state due to photon-assisted tunneling of electrons
and holes into the tip. Here, we defined the electron and
hole tunneling rates

Γe(ω) = 2π|u|2|t|2ν(ω) = γeν(ω)/ν0, (32)

Γh(ω) = 2π|v|2|t|2ν(ω) = γhν(ω)/ν0 (33)

with the BCS density of states

ν(ω) = ν0
|ω|√

ω2 − ∆2
θ(|ω| − ∆) (34)

of the tip. Here, ν0 is the normal-state density of states
per spin direction and we introduced the tunneling rates
γe = 2π|u|2|t|2ν0 and γh = 2π|v|2|t|2ν0 for a normal-state
tip. Similarly, the real part of the self energy becomes

Λ(ω) = −πν0|t|2
∑

n

J2
n(eVHF/Ω)

×
{

|u|2[ω−(eV +nΩ)]
√

∆2 − [ω−(eV +nΩ)]2
θ(∆ − |ω−(eV +nΩ)|)

+
|v|2[ω+(eV +nΩ)]

√

∆2 − [ω+(eV +nΩ)]2
θ(∆ − |ω+(eV +nΩ)|)

}

, (35)

describing a (frequency-dependent) renormalization of
the energy of the YSR state.

The lesser self energy can be expressed by inserting Eq.
(A9) into Eq. (30). This yields

Σ̃<
R(ω) = i

∑

n

J2
n(eVHF/Ω)

×[Γe(ω−(eV +nΩ))nF (ω−(eV +nΩ))

+Γh(ω+(eV +nΩ))]nF (ω+(eV +nΩ))]. (36)

This also yields the lesser Green function

G<
R(ω) = ψ

Σ̃<
R(ω)

[ω − ǫ0 − Λ(ω)]2 + 1
4 Γ2(ω)

ψ† (37)

of the substrate using the relation (B9) in App. B.

Within the diagonal approximation, we can then ex-
press Eq. (22) for the current in frequency representa-
tion,

I(τ) = e

∫

dω

2π
Tr
{

τz

[

G<
R(ω)Σa

R(ω) +Gr
R(ω)Σ<

R(ω)

−Σ<
R(ω)Ga

R(ω) − Σr
R(ω)G<

R(ω)
]

}

. (38)
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Figure 5. Resonant Andreev reflections from a YSR state
with a normal-state electrode for (a) positive and (b) negative
polarity of the bias voltage V (schematic, no high-frequency
radiation).

This can be written in the alternative form

I = e

∫

dω

2π
Tr
{

τz

[

Gr
R(ω)(Σr

R(ω) − Σa
R(ω))Ga

R(ω)Σ<
R(ω)

−Gr
R(ω)Σ<

R(ω)Ga
R(ω)

(

Σr
R(ω) − Σa

R(ω)
)

]

}

(39)

using that the self energy ΣR is also diagonal in Nambu
space and commutes with τz as well as the identities
Gr

R − Ga
R = Gr

R(Σr
R − Σa

r)Ga
R and G<

R = Gr
RΣ<

RG
a
R (see

Appendix B).

With this, we are now in a position to evaluate the
current in Eq. (39) and obtain

I = 2e

∫

dω

2π

∑

n,m

J2
n(eVHF/Ω)J2

m(eVHF/Ω)

×Γe(ω−(eV +nΩ))Γh(ω+(eV +mΩ))

[ω − ǫ0 − Λ(ω)]2 + 1
4 Γ2(ω)

×[nF (ω−(eV +nΩ)) − nF (ω+(eV +mΩ))] (40)

after some straightforward algebra. This expression gen-
eralizes the results of Ref. [7] to include photon-assisted
processes and is a main result of this paper. While the
current does not obey the simple Tien-Gordon relations
(1), the electron and hole tunneling rates by themselves
behave in a Tien-Gordon-like manner. Equation (40) is
not only in excellent agreement with the more complete
treatment shown below, but also with recent experimen-
tal results [8]. We note that we have approximated the
substrate Green function by retaining the contribution
of the subgap state only. As a result, Eq. (40) describes
only those sidebands which fall within the superconduct-
ing gap. In effect, this imposes upper cutoffs on the fre-
quency and amplitude of the HF radiation. Except for
these cutoffs, the results are independent of the substrate
gap.

2. Normal-metal tip

As a first application of Eq. (40), consider a normal-
metal tip (temporarily setting ∆ = 0 in the self energy)
in the absence of the ac field. The basic resonant Andreev
reflection process in this case is illustrated in Fig. 5. For a
normal-metal tip, the self energy is purely imaginary and
frequency independent, so that the bias voltage enters
only into the Fermi functions. This allows one to readily
evaluate the zero-temperature differential conductance,

dI

dV
=

2e2

h

∑

±

γeγh

(eV ± ǫ0)2 + (γe + γh)2/4
, (41)

where we have reinstated Planck’s constant. This yields
two symmetric resonances at eV = ±ǫ0 with peak height

dI

dV

∣

∣

∣

∣

peak

=
2e2

h

4|u|2|v|2
(|u|2 + |v|2)2

. (42)

Thus, the peak height depends on the relative magni-
tudes of the electron and hole wavefunctions of the YSR
state and has a maximal value of 2e2/h, as long as the
positive- and negative-energy peaks are well separated.
Specifically, the peak height becomes maximal when the
electron and hole wavefunctions at the tip position are
equal, |u|2 = |v|2. For a YSR state with zero energy, the
two peaks coalesce and the maximal peak height equals
4e2/h. The latter result should be compared to analo-
gous results for Majorana bound states which give a peak
conductance of 2e2/h [23, 24], reflecting the fact that un-
like YSR states, Majorana bound states effectively cor-
respond to only half a conventional fermionic excitation,
see also Sec. V.

In the presence of the ac field, the zero-temperature
differential conductance becomes

dI

dV
=

2e2

h

∑

n

∑

±

J2
n(eVHF/~Ω)γeγh

(eV + n~Ω ± ǫ0)2 + (γe+γh)2

4

, (43)

using the Bessel-function identity
∑

n J
2
n(x) = 1. Thus,

the conductance peaks at eV = ±ǫ0 develop sidebands
whose spacings are given by the photon frequency ~Ω and
whose amplitudes are controlled by Bessel functions.

At finite temperatures, the peaks become convolutions
of the Lorentzian with derivatives of the Fermi function
in the usual manner. While the peaks are Lorentzian
with a width controlled by the tunneling rates γe and γh

at low temperatures, they cross over to derivatives of the
Fermi functions at high temperatures. Here, we assume
that the temperature is still sufficiently small compared
to the substrate gap so that we can neglect inelastic pro-
cesses which couple the YSR state to the quasiparticle
continuum of the substrate. Once the latter become rel-
evant, there is an additional contribution to the current
originating from single-electron tunneling. (An experi-
mental fingerprint of the latter is that it generically leads
to asymmetric conductance peaks at eV = ±ǫ0 [7, 44].)
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3. Superconducting tip

We can now make contact with the physical discussion
for a superconducting tip in Sec. II. The advantages of
superconducting tips are twofold. First, they enhance en-
ergy resolution owing to the sharp peak in the BCS den-
sity of states at the gap edge. Second, when the tip is su-
perconducting, the YSR peaks appear at eV = ±(∆+ǫ0)
and the Fermi-function factor in Eq. (40) equals ±1 to
exponential precision in T/∆. Thus, the current is insen-
sitive to temperature as long as T ≪ ∆, a much weaker
condition than for normal-state tips where temperature
should be compared to the intrinsic width of the YSR
resonance [54].

The expression (40) clearly exhibits the coherent na-
ture of the underlying tunneling process. Analogous to
conventional resonant tunneling through a bound state
[55, 56], the electron and hole tunneling rates Γe and
Γh enter not only in the numerator, but also determine
the broadening of the YSR resonance denominator. The
current is then nonperturbative in the tip-substrate tun-
neling, and consequently sublinear in the normal-state
conductance of the tunnel junction [7].

An explicit evaluation of the differential conductance
must take into account that as a consequence of the BCS
density of states of the tip, the tunneling rates are them-
selves functions of ω [7]. First consider the case without
high-frequency radiation for positive bias voltages near
the threshold eV = ∆ + ǫ0. Due to the BCS density of
states, the hole contribution to the tunneling rate Γ(ω)
in Eq. (31) becomes of order

Γh,thres ≃ γh

√

∆

4ǫ0
. (44)

In contrast, the electron contribution becomes singular,

Γe(ω − eV ) ≃ γe

√

∆

2(ǫ0 − ω)
θ(ǫ0 − ω), (45)

cp. Fig. 1(a). Thus, the characteristic electron scatter-
ing rate Γe,thres depends on whether the broadening Γ is
dominated by electron or hole tunneling. If electron tun-
neling dominates the broadening, we find the threshold
electron tunneling rate Γe,thres by comparing Γe(ω− eV )
to the ω − ǫ0 term in the resonance denominator of Eq.
(40). This yields Γe,thres ∼ (γ2

e ∆)1/3, and Eq. (40) gives
the peak differential conductance

dI

dV

∣

∣

∣

∣

peak,+

∼ 2e2

h

Γh,thres

Γe,thres
∼ 2e2

h

γh∆1/6

γ
2/3
e ǫ

1/2
0

. (46)

If on the other hand, hole tunneling dominates the broad-
ening, Γh,thres ≫ Γe,thres, the characteristic electron tun-
neling rate becomes Γe,thres ∼ γe(∆/Γh,thres)

1/2, and we

find

dI

dV

∣

∣

∣

∣

peak,+

∼ 2e2

h

Γe,thres

Γh,thres
∼ 2e2

h

γeǫ
3/4
0

γ
3/2
h ∆1/4

. (47)

Details of this calculation can be found in App. C
Analogous considerations apply to negative bias volt-

ages near the threshold eV = −(∆ + ǫ0), where the hole
tunneling rate becomes singular at threshold while the
electron tunneling rate Γe,thres = γe(∆/4ǫ0)1/2 remains
regular, cf. Fig. 1(b). When electron tunneling domi-
nates, Γe,thres ≫ Γh,thres, we find the characteristic hole
tunneling rate Γh,thres ∼ γh(∆/Γe)1/2 and the peak dif-
ferential conductance becomes

dI

dV

∣

∣

∣

∣

peak,−
∼ 2e2

h

Γh,thres

Γe,thres
∼ 2e2

h

γhǫ
3/4
0

γ
3/2
e ∆1/4

. (48)

If on the other hand, broadening is dominated by hole
tunneling, Γh,thres ≫ Γe,thres, we find Γh,thres ∼ (γ2

h∆)1/3

and

dI

dV

∣

∣

∣

∣

peak,−
∼ 2e2

h

Γe,thres

Γh,thres
∼ 2e2

h

γe∆1/6

γ
2/3
h ǫ

1/2
0

. (49)

In the presence of the high-frequency radiation, Eq.
(40) exhibits photon-assisted sidebands in the differen-
tial conductance as reflected in the frequency arguments
which are shifted by multiples of ~Ω. The strength of
these sidebands oscillates as a function of VHF due to the
oscillatory nature of the Bessel functions. Moreover, the
Bessel functions rapidly diminish as their argument be-
comes larger than the index, so that the sums over n and
m – and thus the photon-assisted sidebands – are effec-
tively restricted to the range |n|, |m| . eVHF/~Ω. It is
these limits that are indicated in Fig. 3 by white (dashed
and dotted) lines and reflect the fact that the tunnel-
ing electrons and holes can gain or lose at most eVHF in
energy due to the HF field.

Equation (40) also makes the separate thresholds for
electron and hole tunneling explicit, which were under-
lying much of our discussion in Sec. II. The tunneling
rates Γe/h are proportional to the BCS density of states
with its onset of density of states at ±∆. Using the
resonance denominator in Eq. (40) to replace ω by the
bound-state energy ǫ0 in the electron and hole tunneling
rates Γe(ω−(eV +nΩ)) and Γh(ω+(eV +mΩ)), we read
off thresholds at eV = ±∆ + ǫ0 − nΩ for electron tun-
neling and at eV = ±∆ − ǫ0 −mΩ for hole tunneling, in
agreement with the results quoted in Sec. II B (up to the
irrelevant sign of the integers n,m).

We now use Eq. (40) to analyze the strength of the
photon-assisted sidebands more systematically. In the
presence of the high-frequency radiation, the electron and
hole tunneling rates split into photon-assisted sidebands,
see Eq. (31). To understand the pattern of sidebands in
the differential conductance, we assume that the broad-
ening Γ is small compared to the photon energy Ω. Then,
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we can write the total (electron and hole) tunneling rate
in Eq. (31) as Γ(ω) = [Γe,0 + δΓe(ω)] + [Γh,0 + δΓh(ω)].
Here, Γe,0 and Γh,0 denote the contributions of all non-
resonant sidebands which are independent of ω to leading
order, while δΓe(ω) and δΓh(ω) are the ω-dependent con-
tributions of the resonant sidebands. The distribution of
weight over sidebands implies that with one exception
discussed below, we can typically neglect the contribu-
tion of δΓe(ω) and δΓh(ω) to the broadening in the de-
nominator of Eq. (40). Similarly, we need to retain the
contribution of a resonant sideband in the numerator to
obtain a nonzero contribution to the differential conduc-
tance. (Recall that the Fermi functions as well as Γe,0 and
Γh,0 are essentially independent of bias voltage.) With
these considerations, we obtain the estimate

dI

dV

∣

∣

∣

∣

peak

∼ 2e2

h

Γe,0δΓh,thres + Γh,0δΓe,thres

(Γe,0 + Γh,0)2
, (50)

where δΓe/h,thres is given by evaluating δΓe/h(ω) within
Γe,0 + Γh,0 of the resonance.

When |u|2 = |v|2, we have, in magnitude, Γe,0 ≈ Γh,0

and δΓe,thres ≈ δΓh,thres. We then expect electron and
hole sidebands to have comparable strengths and we find
a peak conductance of order

dI

dV

∣

∣

∣

∣

peak

∼ 2e2

h

δΓe/h,thres

Γe,0 + Γh,0
. (51)

Here, we assume for simplicity that the electron and hole
sidebands are not overlapping when writing the numer-
ator. Next consider asymmetric electron and hole wave-
functions, say |u|2 ≪ |v|2. Then, we have Γe,0 ≪ Γh,0,
and Eq. (50) reduces to

dI

dV

∣

∣

∣

∣

peak

∼ 2e2

h

[

Γe,0δΓh,thres

Γ2
h,0

+
δΓe,thres

Γh,0

]

. (52)

At first sight, the first term in the square brackets is sup-
pressed because of the additional factor Γe,0/Γh,0. How-
ever, the asymmetry between the electron and hole wave-
functions also implies δΓe,thres ≪ δΓh,thres, so that the
two terms in the square brackets are of the same order as
they stand. However, the first term is indeed suppressed
since it is here where we should remember that the de-
nominator also includes the resonant contributions. For
|u|2 ≪ |v|2, these are dominated by δΓh(ω). This con-
tribution strongly counteracts and thus suppresses the
sidebands of the numerator due to δΓh. We can then in-
deed neglect the first term in square brackets and obtain

dI

dV

∣

∣

∣

∣

peak

∼ 2e2

h

δΓe,thres

Γh,0
. (53)

This explains why hole sidebands are suppressed relative
to electron sidebands and thus the appearance of the Y -
shaped pattern at negative bias voltages as well as the

appearance of only a single (electron) set of sidebands at
positive bias voltages. Similarly, when |v|2 ≪ |u|2, we
have Γh,0 ≪ Γe,0, and we find

dI

dV

∣

∣

∣

∣

peak

∼ 2e2

h

δΓh,thres

Γe,0
, (54)

so that hole sidebands are dominant. We finally note that
these results imply that the sidebands reduce in strength
as electron and hole wavefunction become more asym-
metric, in agreement with Fig. 3.

Equation (40) also includes the effects of the real part
Λ of the self energy. It is interesting to note that in
the absence of the ac field, the real part does not con-
tribute. Indeed, without ac field, the self energy is either
purely real or purely imaginary. Current only flows when
both imaginary parts Γe and Γh are nonzero, and con-
sequently, Λ(ω) does not contribute. The situation is
different in the presence of the ac field, since now the
imaginary parts must only be nonzero when absorbing
or emitting certain numbers of photons. Contributions
to the self energy when absorbing or emitting a different
number of photons can still be real and contribute to the
resonance denominator in the expression for the current.

Our calculation assumes that we can retain only the
contribution of the YSR bound state to the substrate
Green function. This requires that the tip-induced
broadening of the YSR state remains small compared
to the superconducting gap. The characteristic magni-
tude of the tip density of states is given by the normal-
state density of states ν0 and the YSR wavefunction at
the tip position is of order |u|2, |v|2 ∼ ν0∆ [57]. This
yields the estimate |t|2ν2

0∆ for the broadening of the YSR
state. Our approximation for the substrate Green func-
tion is thus accurate as long as ν0|t| ≪ 1. In view of
the normal-state tunneling conductance of the junction,
GT = (2e2/h)4π2(ν0|t|)2, this is equivalent to the condi-
tion GT ≪ 2e2/h.

B. Exact treatment

1. Derivation

We now consider the exact self energy

ΣR(τ, τ ′) = |t|2
∑

n,m

Jn(eVHF/Ω)Jm(eVHF/Ω)

×e−i(eV +nΩ)ττzgL(τ − τ ′)ei(eV +mΩ)τ ′τz . (55)

including the nondiagonal contribution. In frequency
representation defined through

ΣR(τ, τ ′) =

∫

dω

2π

dω′

2π
e−iωτ+iω′τ ′

ΣR(ω, ω′), (56)
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this becomes

ΣR(ω, ω′) = |t|2
∑

n,m

Jn(eVHF/Ω)Jm(eVHF/Ω)

×2πδ(ω − ω′ − (n−m)Ωτz)gL(ω − (eV + nΩ)τz). (57)

As this is nonzero only when the frequency arguments ω
and ω′ differ by multiples of Ω, we can write

ΣR(ω, ω′) =
∑

m

2πδ(ω − ω′ −mΩ)Σm(ω′) (58)

with

Σm(ω) =
∑

n

Jn

[

Jn+mgL(ω−,n) 0
0 Jn−mgL(ω+,n)

]

.(59)

Here, we temporarily suppressed the arguments of the
Bessel functions and introduced ω±,n = ω±(eV +nΩ) for
compactness. We also note that the self energy satisfies
the relation

Σ−m(ω +mΩ) = Σm(ω), (60)

which is readily confirmed using the explicit expression
(59).

Iteration of the Dyson equation GR = gR + gRΣRGR

implies that the Green function GR(ω, ω′) is also nonzero
only when its frequency arguments ω and ω′ differ by
multiples of Ω. Thus, we define

GR(ω, ω′) =
∑

m

2πδ(ω − ω′ −mΩ)Gm(ω′) (61)

with

GR(τ, τ ′) =
∑

n

∫

dω

2π
e−iω(τ−τ ′)−inΩτGn(ω). (62)

Inserting Eqs. (58) and (61) into the Dyson equation, we
find

Gn(ω) = gR(ω)δn,0

+
∑

m

gR(ω + nΩ)Σn−m(ω +mΩ)Gm(ω), (63)

which provides a set of linear equations to compute the
Gn(ω).

Writing the current in Eq. (22) using Eqs. (58) and
(61) and focusing on the dc contribution, we find

Idc = e

∫

dω

2π

∑

n

Tr
{

τz

×
[

G<
n (ω)Σa

−n(ω + nΩ) +Gr
n(ω)Σ<

−n(ω + nΩ)

−Σ<
n (ω)Ga

−n(ω + nΩ) − Σr
n(ω)G<

−n(ω + nΩ)
]

}

.(64)

This can be made more compact by using Eq. (60),

Idc = e

∫

dω

2π

∑

n

Tr
{

τz

[

G<
n (ω)Σa

n(ω) +Gr
n(ω)Σ<

n (ω)

−Σ<
n (ω)Ga

n(ω) − Σr
n(ω)G<

n (ω)
]

}

. (65)

Together with the expressions (59) and (63) for the self
energy and the Green function, respectively, this consti-
tutes our final result.
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Figure 6. Comparison between diagonal approximation (dif-
ferent colors) and the exact solution (green) for ǫ0/∆ = 0.4,
Ω/∆ = 0.025, eVHF = 2Ω, and u2 = v2/9. (a) dI/dV at
negative and positive voltages at strong tip-sample tunnel-
ing (Γh,thres = 2Ω). The resonances at negative bias volt-
ages are shifted relative to the diagonal approximation, while
the differences are merely quantitative at positive biases. (b)
Closeup of threshold region at negative bias voltages for in-
creasing tip-sample tunneling Γh,thres as indicated in the fig-
ure (from bottom to top; offset for clarity). The differences
between exact solution (green) and diagonal approximation
become substantial once Γh,thres becomes comparable to the
photon energy Ω. Dashed lines indicate multiples of the pho-
ton energy Ω.

2. Results

We solve Eq. (63) numerically by truncating the sys-
tem of equations at a sufficiently high |n| ≫ VHF/Ω and
compute the current from Eq. (65). Due to the terms
of the self energy which are offdiagonal in frequency, the
exact solution is sensitive to Green functions which are
evaluated at frequencies shifted by integer multiples of
the photon energy. This suggests that the exact solu-
tion deviates from the diagonal approximation when the
tunneling-induced broadening of the Green functions be-
comes of the order of or larger than the photon energy.
Conversely, the diagonal approximation is expected to
be accurate in the limit of small broadening and well-
resolved photon sidebands.
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Figure 6 compares representative numerical results ob-
tained in the diagonal approximation and the numeri-
cally exact solution. The results consider the parameter
regime u2 = v2/9 where the Y shape appears at nega-
tive voltages. The choice of eVHF/Ω = 2 implies that
the resonances at negative voltages are associated with
the lower part (stem) of the Y shape. Panel (a) shows
both negative and positive voltages for strong tunneling-
induced broadening. At positive biases, we find that the
sidebands are no longer well resolved due to the broad-
ening and the differences between the diagonal approx-
imation and exact result are largely quantitative. The
self energy already present in the diagonal approxima-
tion, including the hole contribution to the broadening,
dominates over additional contributions in the exact solu-
tion. In contrast, we find distinct differences at negative
voltages. Here, the hole contribution to the broaden-
ing is still suppressed around the threshold voltage along
the stem of the Y shape and the resonances remain well
resolved. One then observes that the sidebands are dis-
tinctly shifted to higher bias voltages in the exact solu-
tion, while the width of the resonances remains essen-
tially unchanged, i.e., the dominant effect is associated
with the real part of the self energy.

Panel (b) explores the dependence on the strength of
tip-substrate tunneling, focusing on the region of nega-
tive voltages. We quantify the four different strengths
of tip-substrate tunneling by the threshold value for the
hole tunneling rate

Γh,thres =
1

2

(

γ2
h∆
)1/3

, (66)

as evaluated for the regime of dominant hole tunneling.
For weak tip-substrate tunneling, Γh,thres/Ω = 1/8, the
broadening is small compared to the photon energy and
in agreeement with expectations, the diagonal approxi-
mation is essentially identical to the exact solution. For
Γh,thres/Ω = 1/2, quantitative differences such as modi-
fied peak heights begin to appear, but the peak positions
still remain identical. The differences become more pro-
nounced for Γh,thres/Ω = 1 and Γh,thres/Ω = 2, where we
observe substantial shifts of the peaks to higher bias volt-
ages. Also note that the resonance width grows with in-
creasing Γh,thres/Ω as expected. These results show that
the diagonal approximation is accurate in the regime of
well-resolved sidebands.

We finally point out that the diagonal approximation
is exact for a normal-state tip with a constant density of
states ν0. In this case, the retarded and advanced self
energies in Eq. (21) are purely imaginary,

Σr,a
R (τ, τ ′) = ∓iπ|t|2ν0δ(τ − τ ′), (67)

and independent of the ac field. This makes also the
retarded and advanced substrate Green functions inde-
pendent of the ac field, so that Σr,a

n is nonzero for n = 0

only,

Σr,a
n=0(ω) = ∓iπ|t|2ν0. (68)

Then, Gr,a
n is nonzero for n = 0 only and only the n = 0

term contributes to the dc current in Eq. (65). Moreover,
one readily ascertains from the Dyson equation (63) and
the Langreth rules that the n = 0 components satisfy a
closed set of equations which is just the set of equations
which leads to the diagonal approximation.

V. MAJORANA BOUND STATES

A. Basic results

Our considerations for YSR states apply to photon-
assisted tunneling into Majorana bound states with only
minor modifications. First, Majorana bound states have
zero energy so that we set ǫ0 = 0. Second, their electron
and hole wavefunctions are equal in magnitude, satisfying
u = v∗ for spinless fermions (and corresponding expres-
sions for spinful electrons in a four-component Nambu
formalism). Finally, an isolated Majorana bound state
is a solution of the particle-hole symmetric Bogoliubov-
deGennes equation which doubles the degrees of free-
dom. Due to this doubling of degrees of freedom, the
expression for the current must be multiplied by a fac-
tor of 1/2 relative to the case of a YSR state. We note
that here, we focus on tunneling into Majorana bound
states in a grounded superconductor. A recent experi-
ment [17] has studied the effects of photon-assisted tun-
neling on the charge stability diagram of two coupled
Majorana nanowires with floating superconductors sub-
ject to charging energies.

First consider photon-assisted resonant Andreev pro-
cesses into Majorana bound states from a normal-metal
tip. Using these translation rules, we obtain correspond-
ing results directly from the results for YSR states given
in Sec. IV A 2. The equal magnitude of electron and hole
wavefunctions makes the peak conductance universal and
equal to 2e2/h for Majorana bound states [23, 24]. This
corresponds to half of the maximal peak conductance of
a zero-energy YSR state, reflecting that Majorana bound
states are effectively only half of an ordinary subgap
state.

In the presence of high-frequency radiation, there are
photon-assisted sidebands and one readily obtains from
Eq. (43) that

dI

dV
=

2e2

h

∑

n

J2
n(eVHF/~Ω)

γ2

(eV + n~Ω)2 + γ2
, (69)

where we introduced γ = γe = γh. Thus, the familiar
Majorana zero-bias peak of height 2e2/h splits into pho-
ton sidebands with a sideband spacing in bias voltage of
~Ω/e. As for YSR states, this can be traced back to the
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Figure 7. Differential conductance (color scale) as a function
of bias voltage eV and amplitude eVHF of the high-frequency
radiation for tunneling into a YSR state with equal electron
and hole wavefunctions, |u|2 = |v|2 and small YSR energies ǫ0

increasing from zero to ~Ω/2 from top to bottom as indicated
in the panels. The regions with electron and hole sidebands
are indicated by white dashed and dotted lines, respectively.
The five panels show clearly that a nonzero energy of the
YSR state generates a splitting of the photon-assisted side-
bands which appears with high multiplicity throughout the
V-shaped region. This provides the basis for a high-resolution
measurement of the energy of the subgap state, which can be
used to identify YSR (or Andreev) bound states with near-
zero energy ǫ0 with high resolution, and thereby distinguish
them from Majorana bound states. Parameters: Ω/∆ = 0.05,
ν0|t| = 0.04.

existence of separate threshold conditions for electrons
and holes. For Majorana bound states, these two sets
of conditions coincide by particle-hole symmetry, lead-
ing to a sideband spacing of ~Ω/e seemingly indicating
single-electron tunneling despite the underlying resonant
Andreev process.

For a superconducting tip, we focus on the limit of
well-resolved sidebands where the diagonal approxima-
tion (40) is accurate and obtain

I = e sgn(V )

∫

dω

2π

∑

n,m

J2
n(eVHF/Ω)J2

m(eVHF/Ω)

×Γe(ω−(eV +nΩ))Γh(ω+(eV +mΩ))

[ω − ǫ0 − Λ(ω)]2 + 1
4 Γ2(ω)

, (70)

where Γe(ω) and Γh(ω) are now evaluated with |u|2 =
|v|2 and thus equal. Up to an overall scale factor of 1/2,
the result is identical to that for a YSR state with ǫ0 = 0
and |u|2 = |v|2 as shown in the top panel in Fig. 7. For
ǫ0 = 0, the V shapes for the electron and hole conditions
coincide and are centered on eV = ±∆. This also im-
plies that similar to the case of a normal-state tip, there
is only one set of sidebands with spacing ~Ω which is
enhanced by the fact that electron and hole resonances
coincide. While the pattern of resonances at eV = ±∆ is
necessarily symmetric with respect to a change of sign of
the bias voltage, the individual V shapes are asymmetric
about eV = ∆ (or, analogously, eV = −∆). This is a
consequence of the fact that the broadening is smaller
on the small-bias side of the V shape, leading to sharper
features and a larger differential conductance (see Fig. 7;
this is not properly reflected by the color scale in Fig. 8
due to saturation effects).

B. Majorana vs. YSR states

It is frequently a challenge to distinguish zero-energy
Majorana bound states from other low-energy subgap
states. Moreover, in many experiments, putative Ma-
jorana states might be accompanied by close-lying YSR
states [29–31, 58, 59]. Our results on YSR and Majorana
bound states imply that photon-assisted tunneling pro-
vides a high-resolution method to determine the energy
of subgap states. In principle, superconducting tips are
preferable over normal-metal tips because the gap sup-
presses thermal excitations and the strongly peaked BCS
density of states allows for high energy resolution. At the
same time, dI/dV peaks due to subgap states with a zero
or small energy ǫ0 no longer appear as (near) zero-bias
peaks, but rather at eV = ∆ + ǫ0 (since the tunneling
electron leaves behind a quasiparticle in the tip) [29–31].
Thus, the small energy ǫ0 of the bound states is effectively
extracted as a difference of two much larger energies. In
particular, this implies that inaccuracies in the determi-
nation of the tip gap carry over fully into the accuracy
with which the bound-state energy can be determined.

The existence of independent thresholds for electron
and hole tunneling in photon-assisted resonant Andreev
reflections provides a method to extract the bound-state
energy from a line splitting which appears directly in
the measured tunneling spectra [8]. Moreover, this line
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Figure 8. Differential conductance (color scale) as a function of bias voltage eV and amplitude eVHF of the high-frequency
radiation for tunneling into a YSR state with various ratios of electron and hole wavefunctions and small YSR energies ǫ0

increasing from zero to ~Ω/2 from top to bottom, as indicated in the panels. The regions with electron and hole sidebands
are outlined by white dashed and dotted lines, respectively. The splitting of the sidebands due to a small nonzero energy ǫ0

appearing for equal electron and hole wavefunctions (central column of panels) are less pronounced for asymmetric electron
and hole wavefunctions. For YSR states, the ratio of electron and hole wavefunctions typically varies as a function of position.
In STM experiments, one can therefore generically choose a tip position for which electron and hole wavefunctions have similar
magnitude. Parameters: Ω/∆ = 0.05, ν0|t| = 0.04.

splitting appears with a high multiplicity throughout the
V-shaped region within which one observes thresholds
for photon-assisted tunneling. To illustrate this, consider
first resonant Andreev reflections into a YSR state with
equal electron and hole wavefunctions and a small energy
ǫ0, as shown in Fig. 7. Up to an overall prefactor of
1/2, the panel for ǫ0 = 0 is identical to the result for a
Majorana bound state. One observes that even a small ǫ0
which is just a fraction of the photon energy ~Ω leads to
a splitting of the sidebands and can thus be accurately
detected. This is most evident for ǫ0 = ~Ω/4, making
experiments with variable photon energies particularly
advantageous.

In addition to the line splitting, there is also a char-
acteristic change in the dependence of the sideband
strengths as a function of the amplitude VHF of the high-
frequency radiation. As seen in Fig. 7 and Fig. 8, the
sideband strengths exhibit repeated zeros as a function
of VHF. The zeros originate from the oscillations of the
Bessel functions in Eq. (40) [see also Eq. (23)]. Phys-
ically, these can be considered a result of interference
between various sequences of emissions and absorptions
of ‘photons’ contributing to a sideband. (Notice that the
sideband strength is nonperturbative in VHF and emerges
from processes of all orders when viewed from the point
of view of perturbation theory.) Different sidebands are
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controlled by Bessel functions of different order, and the
corresponding phase shift leads to a shift in the locations
of the zeros between neighboring sidebands.

The behavior of the zeros in Fig. 7 then emerges as
follows. The separate thresholds for electron and hole
tunneling coincide for ǫ0 = 0, but move apart when
ǫ0 becomes nonzero. When ǫ0 = 0, a particular side-
band ‘combines’ electron and hole sidebands described by
Bessel functions of the same order, and the zeros of the
Bessel functions are preserved. For 2ǫ0 = ~Ω, the elec-
tron and hole sidebands are described by Bessel functions
of neighboring orders. Their zeros no longer coincide and
thus the zeros in the observed sideband strengths disap-
pear. This allows one to distinguish true zero-energy
states from situations with nonzero ǫ0 in which electron
and hole sidebands coincide because 2ǫ0 and ~Ω are com-
mensurate.

Corresponding results with unequal electron and hole
wavefunctions are shown in Fig. 8. Clearly, the splitting
due to a small ǫ0 is most pronounced for equal electron
and hole wavefunctions, for which sidebands emerging
from electron and hole sidebands are both equally promi-
nent, cp. the discussion in Sec. IV A 3. For a YSR state,
the ratio of electron and hole wavefunctions varies as a
function of position. In STM experiments, one should
thus choose a tip position where electron and hole wave-
functions are equal to optimize sensitivity. Finally, notice
that the modulations of the sideband strength as a func-
tion of VHF reemerge even for 2ǫ0 = ~Ω once electron and
hole wavefunctions are sufficiently different. In this case,
the electron and hole thresholds contribute with different
strengths, and the sidebands are dominated by one or the
other.

VI. CONCLUSIONS

We have developed a theory for photon-assisted reso-
nant Andreev tunneling into subgap states in supercon-
ductors. Our results are in excellent agreement with re-
cent STM measurements on YSR states [8], fully repro-
ducing the observed patterns of sidebands which differ
markedly from predictions of a simple Tien-Gordon-like
theory.

A central aspect of the theory are independent side-
band conditions for the electron and hole tunneling pro-
cesses. This leads to two sets of sidebands whose relative
shift in bias voltage depends on the ratio of the energy
of the subgap state and the photon energy. As an inter-
esting consequence, this provides a sensitive technique to
measure near-zero energies of subgap states which can be
instrumental in distinguishing conventional subgap states
from Majorana bound states. Simultaneous visibility of
the two sets of sidebands is optimal when electron and
hole wavefunctions are of similar magnitude. For YSR
states, the ratio of electron and hole wavefunctions typ-

ically varies widely with lateral position [45, 47, 60, 61].
This can be exploited in STM experiments by choosing
an appropriate lateral position of the STM tip for op-
timal resolution. The absence of spatial resolution may
make this technique less flexible in transport experiments
using gate defined tunnel junctions.

The observability of the photon-assisted sidebands of
resonant Andreev reflections is constrained by two re-
quirements. On the one hand, tunneling should be suffi-
ciently weak for the tunneling-induced broadening to be
small compared to the sideband spacing so that the side-
bands are well resolved. At the same time, the underly-
ing resonant Andreev reflections require tunneling to be
fast compared to inelastic relaxation processes. The lat-
ter provide competing channels which transfer electrons
into the quasiparticle continuum of the substrate via the
subgap state and which transfer only a single electron be-
tween tip and substrate. A recent STM experiment using
a photon frequency of 40 GHz shows that these condi-
tions on the junction conductance can be simultaneously
satisfied at a temperature of order 1K. Since inelastic
excitations have an activated temperature dependence,
their rate drops rapidly as temperature is lowered. This
implies that even though the broadening of the sidebands
is independent of temperature, the attainable resolution
of small subgap energies improves rapidly at lower tem-
peratures.

In view of recent experiments, we have focused on YSR
states throughout the paper. However, we emphasize
that our theoretical approach is in no way specific to YSR
states and applies equally well to other subgap states.
Consequently, photon-assisted tunneling could also con-
tribute to distinguishing Andreev from Majorana bound
states.

At present, our theory assumes a single subgap state.
However, magnetic impurities frequently induce multiple
subgap states within the superconducting gap [46, 60–
62]. It would thus be interesting to extend the theory to
include several subgap states where one would expect ad-
ditional spectroscopic features to arise when the photon
energy becomes comparable to the level spacing between
subgap states.
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Appendix A: Tip Green function

In this appendix, we briefly review the derivation of
the tip Green function. The Nambu Green function g of
a BCS superconductor (in the absence of tunneling or a
magnetic impurity) takes the form

gL(k, ω) = [ω − ξkτz − ∆τx]−1, (A1)

where τx and τz denote Pauli matrices in Nambu space.
Performing the matrix inversion and computing the cor-
responding local Green function at the tip position yields

gL(ω) =
1

V

∑

k

g(k, ω) = ν0

∫

dk
ω + ξk + ∆τx

ω2 − ξ2
k

− ∆2
. (A2)

Performing the integral gives the result

gL(ω) = −πν0(ω + ∆τx)√
∆2 − ω2

. (A3)

This can be used to find the retarded and advanced as
well as lesser Green functions which are used throughout
the main text.

The retarded and advanced Green functions are purely
real at frequencies below the gap, |ω| < ∆, where one
finds

g
r/a
L (ω) = −πν0(ω + ∆τx)√

∆2 − ω2
, (A4)

and purely imaginary at frequencies above the gap, |ω| >
∆,

g
r/a
L (ω) = ∓ iπν0(ω + ∆τx)√

ω2 − ∆2
sgn(ω). (A5)

To derive the lesser Green function, we use the relation

g<
L (ω) = −nF (ω)[gr

L(ω) − ga
L(ω)] (A6)

and obtain

g<
L (ω) = 2πinF (ω)

ν0(ω + ∆τx)√
ω2 − ∆2

θ(|ω| − ∆)sgn(ω), (A7)

where θ(x) denotes the Heaviside function.
Within our calculation, neglecting Andreev reflections

in the tip is equivalent to dropping the off-diagonal con-
tributions to the tip Green function. In this approxima-
tion, gL(ω) becomes proportional to the unit matrix in
Nambu space and we find

g
r/a
L (ω) ≃

{

−πν0
ω√

∆2−ω2
, |ω| < ∆

∓iπν0
|ω|√

ω2−∆2
, |ω| > ∆

(A8)

for the retarded and advanced Green functions and

g<
L (ω) ≃ 2πinF (ω)

ν0|ω|√
ω2 − ∆2

θ(|ω| − ∆) (A9)

for the lesser Green function. The above-gap expressions
can be expressed compactly in terms of the BCS density
of states in Eq. (34).

Appendix B: Substrate Green function

This appendix discusses the Green function of the sub-
strate. We first consider the bare substrate Green func-
tion at subgap energies. In keeping with our approxima-
tion of neglecting the (nonresonant) Andreev reflections
in the tip, we retain only the bound state contributions
to the substrate Green function which are responsible for
the resonant Andreev reflections. For general (spinful)
Hamiltonians, one needs to work with Nambu operators
which involve electrons and holes of both spins. The
resulting Bogoliubov-deGennes equation is particle-hole
symmetric and subgap bound states will appear in pairs
with energies of opposite sign. Correspondingly, in this
approach, one finds pairs of YSR states with energies
±ǫ0. Such spinful Nambu and Bogoliubov-deGennes de-
scriptions are however redundant in that they double the
degrees of freedom.

In its spinful version, the Bogoliubov-deGennes Hamil-
tonian of the present problem is block-diagonal, with one
subspace spanned by spin-up electrons and spin-down
holes, and the other subspace by spin-down electrons and
spin-up holes (with the spin-quantization axis taken par-
allel to the impurity spin). The two subspaces are re-
lated by particle-hole symmetry. This has two important
consequences. First, the doubling of degrees of freedom
can be avoided by retaining only one of the two sub-
spaces. Second, each subspace hosts one of the partners
of each pair of YSR states. Consequently, when retain-
ing only one subspace, there is only one YSR state with
Bogoliubov-deGennes wavefunction ψT = (u, v) at the
tip position R. Thus, we find

gR(ω) = ψ
1

ω − ǫ0
ψ† (B1)

for the approximate (bare) substrate Green function at
subgap energies. (We assume here for simplicity that
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there is only one pair of YSR states in the spinful formu-
lation.)

Tunneling introduces a self energy into the denomina-
tor of the retarded and advanced Green functions,

G
r/a
R = ψ

1

ω − ǫ0 − Σ̃
0,r/a
R

ψ† (B2)

with

Σ̃
0,r/a
R = ψ†Σ

0,r/a
R ψ. (B3)

Note that we have written the last two expressions in gen-
eral operator notation since with ac field, the self energy
is generally no longer diagonal in frequency representa-
tion.

We also review a general relation for the lesser Green
function (including the tunneling to the tip). Using the
Langreth rules, the Dyson equation for GR gives

G<
R = g<

R + gr
GΣr

RG
<
R + gr

GΣ<
RG

a
R + g<

GΣa
RG

a
R, (B4)

which can be readily shown to become

G<
R =

1

1 − gr
RΣr

R

g<
R

1

1 − ga
RΣa

R

+Gr
RΣ<

RG
a
R. (B5)

The first term on the right-hand side vanishes generally
as long as the system was noninteracting in the infinite
past. Here, we can also use the explicit expression (A6),
with L replaced by R, to write

1

1 − gr
RΣr

R

g<
R

1

1 − ga
RΣa

R

= −nF (ω)
1

1 − gr
RΣr

R

[gr
R − ga

R]
1

1 − ga
RΣa

R

. (B6)

Inserting the identity

gr
R − ga

R = −2iηgr
Rg

a
R (B7)

with a positive infinitesimal η yields

1

1 − gr
RΣr

R

g<
R

1

1 − ga
RΣa

R

= 2iηnF (ω)Gr
RG

a
R = 0. (B8)

Thus, we find the identity

G<
R = Gr

RΣ<
RG

a
R. (B9)

Appendix C: Peak differential conductance

In this appendix, we sketch the derivation of the ex-
pressions for the differential conductance given in Sec.
IV A 3. We focus on the case of positive bias voltage
eV = ∆ + ǫ0. The other cases can be obtained in an
analogous manner. To start with, the current (without
high-frequency radiation) is given by Eq. (40), where for

T ≪ δ we can set the Fermi functions to zero and one,
respectively,

I = 2e

∫

dω

2π

Γe(ω − eV )Γh(ω + eV )

[ω − ǫ0]2 + 1
4 [Γe(ω − eV ) + Γh(ω + eV )]2

.

(C1)
For eV ≃ eV0 = ∆ + ǫ0, Γh(ω + eV ) is nonsingular, so
that we can neglect the bias dependence and set ω ≃ ǫ0
due to the resonance denominator. Assuming also that
ǫ0 is small compared to ∆ and large compared to the
broadening of the resonance, this yields Γh,thres as given
in Eq. (44). (We note that the assumption of ǫ0 ≪ ∆ is
in no way essential and can be easily lifted.) In contrast,
the bias dependence cannot be neglected in the electron
tunneling rate, since the latter becomes singular at the
threshold. Thus, we write V = V0 + δV and obtain

I ≃ 2e

∫

dω

2π

Γe(ω− − eδV )Γh,thres

[ω − ǫ0]2 + 1
4 [Γe(ω− − eδV ) + Γh,thres]2

.

(C2)
Here, we introduced the shorthand ω− = ω − eV0. Shift-
ing the integration variable, ω → ω + eδV , this becomes

I ≃ 2e

∫

dω

2π

Γe(ω−)Γh,thres

[ω − ǫ0 + eδV ]2 + 1
4 [Γe(ω−) + Γh,thres]2

.

(C3)
This yields

dI

dV

∣

∣

∣

∣

peak,+

≃
∫

dω

2π

4e2(ǫ0 − ω)Γe(ω−)Γh,thres

([ω − ǫ0]2 + 1
4 [Γe(ω−) + Γh,thres]2)2

.

(C4)
for the differential conductance at V = V0. Using
Γe(ω) = γe[ν(ω)/ν0], one readily finds the expression for
Γe(ω−) in Eq. (45). Note that due to the θ-function in
this expression, the integral in Eq. (C4) ranges effectively
over ω from −∞ to ǫ0.

First consider the situation that the broadening of the
resonance denominator is dominated by hole tunneling.
Then, the integral is dominated by ǫ0 − ω ∼ Γh,thres.
Using this in the expression for the electron tunneling
rate, we find that hole tunneling dominates provided that
Γh,thres ≫ (γ2

e ∆)1/3. The characteristic electron tunnel-
ing rate is then given by Γe,thres = γe[∆/2Γh,thres]

1/2.
Consequently neglecting the contribution of electron tun-
neling to the broadening of the denominator, we readily
find

dI

dV

∣

∣

∣

∣

peak,+

≃ 4e2

h

Γe,thres

Γh,thres

∫ ∞

0

dxx1/2

(x2 + 1/4)2
. (C5)

Performing the integral yields the final expression

dI

dV

∣

∣

∣

∣

peak,+

≃ 4πe2

h

Γe,thres

Γh,thres
=

8πe2

h

γeǫ
3/4
0

γ
3/2
h ∆1/4

, (C6)

consistent with Eq. (47).
If the broadening of the resonance denominator is dom-

inated by electron tunneling, the characteristic range of
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ω dominating the integral is determined by ǫ0 − ω ∼
Γe(ω−), which yields ǫ0 −ω ∼ (γe

√
∆)2/3 and a threshold

electron tunneling rate of Γe,thres = (γ2
e ∆)1/3 ≫ Γh,thres.

Keeping only electron tunneling in the denominator of

Eq. (C4), we obtain the expression

dI

dV

∣

∣

∣

∣

peak,+

≃ 4e2

h

Γh,thres

Γe,thres

1√
2

∫ ∞

0

dxx5/2

(x3 + 1/8)2
(C7)

Performing the integral, we find

dI

dV

∣

∣

∣

∣

peak,+

≃ 16πe2

9h

Γh,thres

Γe,thres
=

8πe2

9h

γh∆1/6

γ
2/3
e ǫ

1/2
0

(C8)

consistent with Eq. (46).
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