8 research outputs found

    State of the climate in 2018

    Get PDF
    In 2018, the dominant greenhouse gases released into Earth’s atmosphere—carbon dioxide, methane, and nitrous oxide—continued their increase. The annual global average carbon dioxide concentration at Earth’s surface was 407.4 ± 0.1 ppm, the highest in the modern instrumental record and in ice core records dating back 800 000 years. Combined, greenhouse gases and several halogenated gases contribute just over 3 W m−2 to radiative forcing and represent a nearly 43% increase since 1990. Carbon dioxide is responsible for about 65% of this radiative forcing. With a weak La Niña in early 2018 transitioning to a weak El Niño by the year’s end, the global surface (land and ocean) temperature was the fourth highest on record, with only 2015 through 2017 being warmer. Several European countries reported record high annual temperatures. There were also more high, and fewer low, temperature extremes than in nearly all of the 68-year extremes record. Madagascar recorded a record daily temperature of 40.5°C in Morondava in March, while South Korea set its record high of 41.0°C in August in Hongcheon. Nawabshah, Pakistan, recorded its highest temperature of 50.2°C, which may be a new daily world record for April. Globally, the annual lower troposphere temperature was third to seventh highest, depending on the dataset analyzed. The lower stratospheric temperature was approximately fifth lowest. The 2018 Arctic land surface temperature was 1.2°C above the 1981–2010 average, tying for third highest in the 118-year record, following 2016 and 2017. June’s Arctic snow cover extent was almost half of what it was 35 years ago. Across Greenland, however, regional summer temperatures were generally below or near average. Additionally, a satellite survey of 47 glaciers in Greenland indicated a net increase in area for the first time since records began in 1999. Increasing permafrost temperatures were reported at most observation sites in the Arctic, with the overall increase of 0.1°–0.2°C between 2017 and 2018 being comparable to the highest rate of warming ever observed in the region. On 17 March, Arctic sea ice extent marked the second smallest annual maximum in the 38-year record, larger than only 2017. The minimum extent in 2018 was reached on 19 September and again on 23 September, tying 2008 and 2010 for the sixth lowest extent on record. The 23 September date tied 1997 as the latest sea ice minimum date on record. First-year ice now dominates the ice cover, comprising 77% of the March 2018 ice pack compared to 55% during the 1980s. Because thinner, younger ice is more vulnerable to melting out in summer, this shift in sea ice age has contributed to the decreasing trend in minimum ice extent. Regionally, Bering Sea ice extent was at record lows for almost the entire 2017/18 ice season. For the Antarctic continent as a whole, 2018 was warmer than average. On the highest points of the Antarctic Plateau, the automatic weather station Relay (74°S) broke or tied six monthly temperature records throughout the year, with August breaking its record by nearly 8°C. However, cool conditions in the western Bellingshausen Sea and Amundsen Sea sector contributed to a low melt season overall for 2017/18. High SSTs contributed to low summer sea ice extent in the Ross and Weddell Seas in 2018, underpinning the second lowest Antarctic summer minimum sea ice extent on record. Despite conducive conditions for its formation, the ozone hole at its maximum extent in September was near the 2000–18 mean, likely due to an ongoing slow decline in stratospheric chlorine monoxide concentration. Across the oceans, globally averaged SST decreased slightly since the record El Niño year of 2016 but was still far above the climatological mean. On average, SST is increasing at a rate of 0.10° ± 0.01°C decade−1 since 1950. The warming appeared largest in the tropical Indian Ocean and smallest in the North Pacific. The deeper ocean continues to warm year after year. For the seventh consecutive year, global annual mean sea level became the highest in the 26-year record, rising to 81 mm above the 1993 average. As anticipated in a warming climate, the hydrological cycle over the ocean is accelerating: dry regions are becoming drier and wet regions rainier. Closer to the equator, 95 named tropical storms were observed during 2018, well above the 1981–2010 average of 82. Eleven tropical cyclones reached Saffir–Simpson scale Category 5 intensity. North Atlantic Major Hurricane Michael’s landfall intensity of 140 kt was the fourth strongest for any continental U.S. hurricane landfall in the 168-year record. Michael caused more than 30 fatalities and 25billion(U.S.dollars)indamages.InthewesternNorthPacific,SuperTyphoonMangkhutledto160fatalitiesand25 billion (U.S. dollars) in damages. In the western North Pacific, Super Typhoon Mangkhut led to 160 fatalities and 6 billion (U.S. dollars) in damages across the Philippines, Hong Kong, Macau, mainland China, Guam, and the Northern Mariana Islands. Tropical Storm Son-Tinh was responsible for 170 fatalities in Vietnam and Laos. Nearly all the islands of Micronesia experienced at least moderate impacts from various tropical cyclones. Across land, many areas around the globe received copious precipitation, notable at different time scales. Rodrigues and Réunion Island near southern Africa each reported their third wettest year on record. In Hawaii, 1262 mm precipitation at Waipā Gardens (Kauai) on 14–15 April set a new U.S. record for 24-h precipitation. In Brazil, the city of Belo Horizonte received nearly 75 mm of rain in just 20 minutes, nearly half its monthly average. Globally, fire activity during 2018 was the lowest since the start of the record in 1997, with a combined burned area of about 500 million hectares. This reinforced the long-term downward trend in fire emissions driven by changes in land use in frequently burning savannas. However, wildfires burned 3.5 million hectares across the United States, well above the 2000–10 average of 2.7 million hectares. Combined, U.S. wildfire damages for the 2017 and 2018 wildfire seasons exceeded $40 billion (U.S. dollars)

    Inter-observer reproducibility of HER2 immunohistochemical assessment and concordance with fluorescent <it>in situ </it>hybridization (FISH): pathologist assessment compared to quantitative image analysis

    No full text
    Abstract Background In breast cancer patients, HER2 overexpression is routinely assessed by immunohistochemistry (IHC) and equivocal cases are subject to fluorescent in situ hybridization (FISH). Our study compares HER2 scoring by histopathologists with automated quantitation of staining, and determines the concordance of IHC scores with FISH results. Methods A tissue microarray was constructed from 1,212 invasive breast carcinoma cases with linked treatment and outcome information. IHC slides were semi-quantitatively scored by two independent pathologists on a range of 0 to 3+, and also analyzed with an Ariol automated system by two operators. 616 cases were scorable by both IHC and FISH. Results Using data from unequivocal positive (3+) or negative (0, 1+) results, both visual and automated scores were highly consistent: there was excellent concordance between two pathologists (kappa = 1.000, 95% CI: 1-1), between two machines (kappa = 1.000, 95% CI: 1-1), and between both visual and both machine scores (kappa = 0.898, 95% CI: 0.775–0.979). Two pathologists successfully distinguished negative, positive and equivocal cases (kappa = 0.929, 95% CI: 0.909–0.946), with excellent agreement with machine 1 scores (kappa = 0.835, 95% CI: 0.806–0.862; kappa = 0.837, 95% CI: 0.81–0.862), and good agreement with machine 2 scores (kappa = 0.698, 95% CI: 0.6723–0.723; kappa = 0.709, 95% CI: 0.684–0.732), whereas the two machines showed good agreement (kappa = 0.806, 95% CI: 0.785–0.826). When comparing categorized IHC scores and FISH results, the agreement was excellent for visual 1 (kappa = 0.814, 95% CI: 0.768–0.856), good for visual 2 (kappa = 0.763, 95% CI: 0.712–0.81) and machine 1 (kappa = 0.665, 95% CI: 0.609–0.718), and moderate for machine 2 (kappa = 0.535, 95% CI: 0.485–0.584). Conclusion A fully automated image analysis system run by an experienced operator can provide results consistent with visual HER2 scoring. Further development of such systems will likely improve the accuracy of detection and categorization of membranous staining, making this technique suitable for use in quality assurance programs and eventually in clinical practice.</p

    The Australian Traumatic Brain Injury Initiative: Review and Recommendations for Outcome Measures for Use With Adults and Children After Moderate-to-Severe Traumatic Brain Injury

    No full text
    The Australian Traumatic Brain Injury Initiative (AUS-TBI) aims to select a set of measures to comprehensively predict and assess outcomes following moderate-to-severe traumatic brain injury (TBI) across Australia. The aim of this article was to report on the implementation and findings of an evidence-based consensus approach to develop AUS-TBI recommendations for outcome measures following adult and pediatric moderate-to-severe TBI. Following consultation with a panel of expert clinicians, Aboriginal and Torres Strait Islander representatives and a Living Experience group, and preliminary literature searches with a broader focus, a decision was made to focus on measures of mortality, everyday functional outcomes, and quality of life. Standardized searches of bibliographic databases were conducted through March 2022. Characteristics of 75 outcome measures were extracted from 1485 primary studies. Consensus meetings among the AUS-TBI Steering Committee, an expert panel of clinicians and researchers and a group of individuals with lived experience of TBI resulted in the production of a final list of 11 core outcome measures: the Functional Independence Measure (FIM); Glasgow Outcome Scale-Extended (GOS-E); Satisfaction With Life Scale (SWLS) (adult); mortality; EuroQol-5 Dimensions (EQ5D); Mayo-Portland Adaptability Inventory (MPAI); Return to Work /Study (adult and pediatric); Functional Independence Measure for Children (WEEFIM); Glasgow Outcome Scale Modified for Children (GOS-E PEDS); Paediatric Quality of Life Scale (PEDS-QL); and Strengths and Difficulties Questionnaire (pediatric). These 11 outcome measures will be included as common data elements in the AUS-TBI data dictionary. Review Registration PROSPERO (CRD42022290954)
    corecore