24 research outputs found

    Spaghetti Enriched with Inulin: Effect of Polymerization Degree on Quality Traits and α-Amylase Inhibition

    Get PDF
    Inulin is considered a dietary fiber and represents a noteworthy ingredient for food biofortification due to its health effects and its neutral taste. The aim of the work was the evaluation of the quality of pasta produced using whole-meal flours of two ancient Sicilian landraces (Senatore Cappelli-CAP and Timilia—TIM) fortified with two types of inulin (long-chain topinambur inulin IT and low-chain chicory inulin IC), at two different levels of substitution (2 and 4%) to evaluate its possible effect on α-amylase inhibition. The color indices L* and a* were mainly influenced by cultivars, while IT improved the sensory attributes, mainly the elasticity sensation, and influenced less the other sensory attributes: adhesiveness, color, odor, taste, and Over Quality Score for both landraces. The cooking quality was linked mainly to the landrace used, due to the very different gluten matrix of CAP and TIM. IC and IT showed promising α-Amy inhibitory activity with comparable IC50 values of 0.45 ± 0.04 and 0.50 ± 0.06 mg/mL. The enrichment of spaghetti with inulin with an inhibitory effect on α-amylase determined the hypoglycemic properties of pasta, thus lowering the corresponding IC50 value

    Improvement of Fatty Acid Profile in Durum Wheat Breads Supplemented with Portulaca oleracea L. Quality Traits of Purslane-Fortified Bread

    Get PDF
    The addition of functional ingredients to breads could have effects on preventing cardiovascular diseases, cancers and inflammation. The incorporation of 0–5–10–15% of three populations of dried purslane flour on the rheological, sensorial and nutritional quality of fortified durum wheat breads were evaluated. The increase in dried purslane (up to 15%) caused an increase in the resistance to the mixture and a consequent reduction in its extensibility. The “panel test” gave a largely positive evaluation in 10% of enrichment. The fatty acids in breads resulted higher with the 5% substitution. Contrary to what has been imagined, the increase in percentage of substitution to 10 and 15% did not lead to an increase in linoleic (omega-3) and α-linolenic (omega-6) acid and probably the cause is in the cooking. The total phenols content and the antioxidant potential, evaluated by ferric reducing antioxidant potential (FRAP) and 2,20 -azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays of the enriched breads increased with the percentage of the dry purslane substitution. The enrichment of the durum wheat flour with 5% purslane resulted in a good compromise to obtain good rheological characteristics of loaves and breads with decreased omega-6/omega-3 ratio and good antioxidant properties

    Effect of storage on quality parameters and phenolic content of Italian extra-virgin olive oils

    No full text
    The quality of extra virgin olive oils is affected mainly by hydrolytic and oxidative reactions. The present paper investigated the changes of major and minor components and oxidation indices of three monovarietal extra virgin olive oils after 18months of storage at room temperature and in dark glass bottles conditions. After storage, the basic quality parameters such as free acidity, peroxide values, extinction coefficients, fatty acids composition, chlorophyll and carotenoid content, did not exceed the upper limits set by European Community Regulations for extra-virgin olive oils. Given the importance of the phenolic fraction, UHPLCHESI- MS metodology was used. A decrease in 3,4-DHPEA-EDA (oleacin) and p-HPEA-EDA (oleochantal) was detected whereas, an increase of tyrosol and hydroxytyrosol was measured as a consequence of degradation of ligstroside and oleuropein derivatives. Based on the results it is possible to observe the high nutritional value of the studied oils even after 18months of conservatio

    Overall Quality of “Early” Potato Tubers as Affected by Organic Cultivation

    No full text
    Understanding the nature of the perceived quality advantage of organically-grown early crop potatoes over conventionally-grown ones is of relevance given the expansion in demand for foodstuffs produced by environmentally friendly agricultural practices. The effect of the cultivation system (organic vs. conventional) on physicochemical (skin color, firmness, skin thickness, pH, titratable acidity), nutritional (dry matter, ascorbic acid, total phenolics content, antioxidant activity), and sensorial (for boiled and fried tubers) traits of early potatoes were explored in a field trial conducted during two-seasons in Sicily (Southern Italy) and involving five yellow-fleshed genotypes. The organic cultivation system, averaged across seasons and genotypes, produced tubers displaying a more attractive skin color, with higher skin thickness and firmness, higher dry matter content (19.0 vs. 17.9%), and total phenolics content (350 vs. 232 mg GAE 100 g−1 dry weight) but lower ascorbic acid content (76 vs. 103 mg 100 g−1 dry weight) and antioxidant activity (42 vs. 56% DPPH reduction). The organic cultivation did not affect attributes after boiling but improved all sensory attributes (crispness, typical taste, and browning degree) after frying, highlighting that the superiority of the organic potatoes does not cover all aspects of quality. The positive effects of organic cultivation on physicochemical, nutritional, and sensorial quality were particularly evident in Arinda, Ditta, and ISCI 4F88. Even if the response of organic cultivation on overall quality also depended upon seasonal conditions, cultivar choice plays a key role in optimizing this production system, highlighting the importance of breeding programs

    Overall Quality of “Early” Potato Tubers as Affected by Organic Cultivation

    No full text
    Understanding the nature of the perceived quality advantage of organically-grown early crop potatoes over conventionally-grown ones is of relevance given the expansion in demand for foodstuffs produced by environmentally friendly agricultural practices. The effect of the cultivation system (organic vs. conventional) on physicochemical (skin color, firmness, skin thickness, pH, titratable acidity), nutritional (dry matter, ascorbic acid, total phenolics content, antioxidant activity), and sensorial (for boiled and fried tubers) traits of early potatoes were explored in a field trial conducted during two-seasons in Sicily (Southern Italy) and involving five yellow-fleshed genotypes. The organic cultivation system, averaged across seasons and genotypes, produced tubers displaying a more attractive skin color, with higher skin thickness and firmness, higher dry matter content (19.0 vs. 17.9%), and total phenolics content (350 vs. 232 mg GAE 100 g−1 dry weight) but lower ascorbic acid content (76 vs. 103 mg 100 g−1 dry weight) and antioxidant activity (42 vs. 56% DPPH reduction). The organic cultivation did not affect attributes after boiling but improved all sensory attributes (crispness, typical taste, and browning degree) after frying, highlighting that the superiority of the organic potatoes does not cover all aspects of quality. The positive effects of organic cultivation on physicochemical, nutritional, and sensorial quality were particularly evident in Arinda, Ditta, and ISCI 4F88. Even if the response of organic cultivation on overall quality also depended upon seasonal conditions, cultivar choice plays a key role in optimizing this production system, highlighting the importance of breeding programs

    Phenolic Compounds Characterization and Antioxidant Properties of Monocultivar Olive Oils from Northeast Algeria

    Get PDF
    In Algeria, the olive tree is one of the main fruit species and plays a very important socioeconomic role. The objective of this study was firstly, to identify and quantify the phenolics of some Algerian olive oils, and secondly, to assess the antioxidant activity of the samples. The olive oils used in this study were derived from Algerian cultivars, including Tefahi, Gelb Elfarroudj, Chemlal, and imported cultivar Manzanilla and Zebboudj. For this purpose, gas chromatography—mass spectrometry (GC-MS) was used to identify olive oil fatty acids profile, while the individual phenolic compounds were assessed by ultra-high-performance liquid chromatography–electrospray ionization–high-resolution mass spectrometry (UHPLC-HESI-MS). To verify the antioxidant capacity, five in vitro free radical assays were used. Questionable values of particular physico-chemical parameters, such as the high value of free acidity and the low concentration of monounsaturated fatty acids in oil from the Zebboudj cultivar, indicate that improvements in olive cultivation and oil production practices are needed. Gelb Elfarroudj, Tefahi, and Manzanilla oils contain quantities of monounsaturated fatty acids in accordance with EU regulations. The oil obtained from the Zebboudj cultivar is not usable for food purposes due to the high value in free acidity and the low concentration of monounsaturated fatty acids. Tefahi and Manzanilla cultivars have given oils with the best antioxidant activity as compared to other studied cultivars; this is attributable to their composition in bioactive phenolic compounds, such as secoiridoids, which play an important role in human health as scavengers of free radicals. The results are interesting for producers and consumers to promote the culture of olive oils derived in particular from the Tefahi cultivar. However, in order to improve the health qualities of this oil, the agronomic techniques essentially linked to the time of harvesting of the olives destined for oil production must be improved

    The Physiological Role of Inulin in Wild Cardoon (Cynara cardunculus L. var. sylvestris Lam.)

    No full text
    Wild cardoon (Cynara cardunculus L.) is a widespread Mediterranean plant that accumulates inulin in its roots. This study aimed to analyze the enzyme systems involved in inulin metabolism in the roots of one Sicilian wild cardoon population in relation to the plant’s growth and development stages. During the winter season, the plant showed slow growth; its biomass was represented mainly by leaves and saccharides were mobilized into its roots. During the spring season, the plant doubled its growth rate and differentiated its reproduction organs as a consequence of the cold conditions. The maximum activities of the 1-SST were recorded in line with the high sucrose and inulin levels in roots, which increased quickly. The increase in the 1-FEH activity suggests that fructan-hydrolyzing activity is associated with the sprouting and elongation of plant stalks. The peak of the invertase activity occurred before the 1-FEH peak. The inulin accumulation in the wild cardoon roots was associated with the plant’s reproduction. Sequential 1-SST and 1-FEH activities and the involvement of invertase and 1-FFT in carbohydrate mobilization, in response to the additional energy demand of the plant for stalk elongation before and for capitula development were observed, along with subsequent grain ripening

    The Physiological Role of Inulin in Wild Cardoon (<i>Cynara cardunculus</i> L. var. <i>sylvestris</i> Lam.)

    No full text
    Wild cardoon (Cynara cardunculus L.) is a widespread Mediterranean plant that accumulates inulin in its roots. This study aimed to analyze the enzyme systems involved in inulin metabolism in the roots of one Sicilian wild cardoon population in relation to the plant’s growth and development stages. During the winter season, the plant showed slow growth; its biomass was represented mainly by leaves and saccharides were mobilized into its roots. During the spring season, the plant doubled its growth rate and differentiated its reproduction organs as a consequence of the cold conditions. The maximum activities of the 1-SST were recorded in line with the high sucrose and inulin levels in roots, which increased quickly. The increase in the 1-FEH activity suggests that fructan-hydrolyzing activity is associated with the sprouting and elongation of plant stalks. The peak of the invertase activity occurred before the 1-FEH peak. The inulin accumulation in the wild cardoon roots was associated with the plant’s reproduction. Sequential 1-SST and 1-FEH activities and the involvement of invertase and 1-FFT in carbohydrate mobilization, in response to the additional energy demand of the plant for stalk elongation before and for capitula development were observed, along with subsequent grain ripening
    corecore