7 research outputs found

    Myocardial Function Imaging in Echocardiography Using Deep Learning

    No full text
    Deformation imaging in echocardiography has been shown to have better diagnostic and prognostic value than conventional anatomical measures such as ejection fraction. However, despite clinical availability and demonstrated efficacy, everyday clinical use remains limited at many hospitals. The reasons are complex, but practical robustness has been questioned, and a large inter-vendor variability has been demonstrated. In this work, we propose a novel deep learning based framework for motion estimation in echocardiography, and use this to fully automate myocardial function imaging. A motion estimator was developed based on a PWC-Net architecture, which achieved an average end point error of (0.06±0.04) mm per frame using simulated data from an open access database, on par or better compared to previously reported state of the art. We further demonstrate unique adaptability to image artifacts such as signal dropouts, made possible using trained models that incorporate relevant image augmentations. Further, a fully automatic pipeline consisting of cardiac view classification, event detection, myocardial segmentation and motion estimation was developed and used to estimate left ventricular longitudinal strain in vivo. The method showed promise by achieving a mean deviation of (-0.7±1.6)% compared to a semi-automatic commercial solution for N=30 patients with relevant disease, within the expected limits of agreement. We thus believe that learning-based motion estimation can facilitate extended use of strain imaging in clinical practice

    Myocardial Function Imaging in Echocardiography Using Deep Learning

    No full text
    Deformation imaging in echocardiography has been shown to have better diagnostic and prognostic value than conventional anatomical measures such as ejection fraction. However, despite clinical availability and demonstrated efficacy, everyday clinical use remains limited at many hospitals. The reasons are complex, but practical robustness has been questioned, and a large inter-vendor variability has been demonstrated. In this work, we propose a novel deep learning based framework for motion estimation in echocardiography, and use this to fully automate myocardial function imaging. A motion estimator was developed based on a PWC-Net architecture, which achieved an average end point error of (0.06±0.04) mm per frame using simulated data from an open access database, on par or better compared to previously reported state of the art. We further demonstrate unique adaptability to image artifacts such as signal dropouts, made possible using trained models that incorporate relevant image augmentations. Further, a fully automatic pipeline consisting of cardiac view classification, event detection, myocardial segmentation and motion estimation was developed and used to estimate left ventricular longitudinal strain in vivo. The method showed promise by achieving a mean deviation of (-0.7±1.6)% compared to a semi-automatic commercial solution for N=30 patients with relevant disease, within the expected limits of agreement. We thus believe that learning-based motion estimation can facilitate extended use of strain imaging in clinical practice

    Myocardial Function Imaging in Echocardiography Using Deep Learning

    Get PDF
    Deformation imaging in echocardiography has been shown to have better diagnostic and prognostic value than conventional anatomical measures such as ejection fraction. However, despite clinical availability and demonstrated efficacy, everyday clinical use remains limited at many hospitals. The reasons are complex, but practical robustness has been questioned, and a large inter-vendor variability has been demonstrated. In this work, we propose a novel deep learning based framework for motion estimation in echocardiography, and use this to fully automate myocardial function imaging. A motion estimator was developed based on a PWC-Net architecture, which achieved an average end point error of (0.06±0.04) mm per frame using simulated data from an open access database, on par or better compared to previously reported state of the art. We further demonstrate unique adaptability to image artifacts such as signal dropouts, made possible using trained models that incorporate relevant image augmentations. Further, a fully automatic pipeline consisting of cardiac view classification, event detection, myocardial segmentation and motion estimation was developed and used to estimate left ventricular longitudinal strain in vivo. The method showed promise by achieving a mean deviation of (-0.7±1.6)% compared to a semi-automatic commercial solution for N=30 patients with relevant disease, within the expected limits of agreement. We thus believe that learning-based motion estimation can facilitate extended use of strain imaging in clinical practice

    Artificial Intelligence for Automatic Measurement of Left Ventricular Strain in Echocardiography

    No full text
    Objectives This study sought to examine if fully automated measurements of global longitudinal strain (GLS) using a novel motion estimation technology based on deep learning and artificial intelligence (AI) are feasible and comparable with a conventional speckle-tracking application. Background GLS is an important parameter when evaluating left ventricular function. However, analyses of GLS are time consuming and demand expertise, and thus are underused in clinical practice. Methods In this study, 200 patients with a wide range of left ventricle (LV) function were included. Three standard apical cine-loops were analyzed using the AI pipeline. The AI method measured GLS and was compared with a commercially available semiautomatic speckle-tracking software (EchoPAC v202, GE Healthcare. Results The AI method succeeded to both correctly classify all 3 standard apical views and perform timing of cardiac events in 89% of patients. Furthermore, the method successfully performed automatic segmentation, motion estimates, and measurements of GLS in all examinations, across different cardiac pathologies and throughout the spectrum of LV function. GLS was −12.0 ± 4.1% for the AI method and −13.5 ± 5.3% for the reference method. Bias was −1.4 ± 0.3% (95% limits of agreement: 2.3 to −5.1), which is comparable with intervendor studies. The AI method eliminated measurement variability and a complete GLS analysis was processed within 15 s. Conclusions Through the range of LV function this novel AI method succeeds, without any operator input, to automatically identify the 3 standard apical views, perform timing of cardiac events, trace the myocardium, perform motion estimation, and measure GLS. Fully automated measurements based on AI could facilitate the clinical implementation of GLS

    Artificial Intelligence for Automatic Measurement of Left Ventricular Strain in Echocardiography

    No full text
    Objectives This study sought to examine if fully automated measurements of global longitudinal strain (GLS) using a novel motion estimation technology based on deep learning and artificial intelligence (AI) are feasible and comparable with a conventional speckle-tracking application. Background GLS is an important parameter when evaluating left ventricular function. However, analyses of GLS are time consuming and demand expertise, and thus are underused in clinical practice. Methods In this study, 200 patients with a wide range of left ventricle (LV) function were included. Three standard apical cine-loops were analyzed using the AI pipeline. The AI method measured GLS and was compared with a commercially available semiautomatic speckle-tracking software (EchoPAC v202, GE Healthcare. Results The AI method succeeded to both correctly classify all 3 standard apical views and perform timing of cardiac events in 89% of patients. Furthermore, the method successfully performed automatic segmentation, motion estimates, and measurements of GLS in all examinations, across different cardiac pathologies and throughout the spectrum of LV function. GLS was −12.0 ± 4.1% for the AI method and −13.5 ± 5.3% for the reference method. Bias was −1.4 ± 0.3% (95% limits of agreement: 2.3 to −5.1), which is comparable with intervendor studies. The AI method eliminated measurement variability and a complete GLS analysis was processed within 15 s. Conclusions Through the range of LV function this novel AI method succeeds, without any operator input, to automatically identify the 3 standard apical views, perform timing of cardiac events, trace the myocardium, perform motion estimation, and measure GLS. Fully automated measurements based on AI could facilitate the clinical implementation of GLS

    Real-Time Automatic Ejection Fraction and Foreshortening Detection Using Deep Learning

    Get PDF
    Volume and ejection fraction (EF) measurements of the left ventricle (LV) in 2-D echocardiography are associated with a high uncertainty not only due to interobserver variability of the manual measurement, but also due to ultrasound acquisition errors such as apical foreshortening. In this work, a real-time and fully automated EF measurement and foreshortening detection method is proposed. The method uses several deep learning components, such as view classification, cardiac cycle timing, segmentation and landmark extraction, to measure the amount of foreshortening, LV volume, and EF. A data set of 500 patients from an outpatient clinic was used to train the deep neural networks, while a separate data set of 100 patients from another clinic was used for evaluation, where LV volume and EF were measured by an expert using clinical protocols and software. A quantitative analysis using 3-D ultrasound showed that EF is considerably affected by apical foreshortening, and that the proposed method can detect and quantify the amount of apical foreshortening. The bias and standard deviation of the automatic EF measurements were -3.6 ± 8.1%, while the mean absolute difference was measured at 7.2% which are all within the interobserver variability and comparable with related studies. The proposed real-time pipeline allows for a continuous acquisition and measurement workflow without user interaction, and has the potential to significantly reduce the time spent on the analysis and measurement error due to foreshortening, while providing quantitative volume measurements in the everyday echo lab

    Strain echocardiography improves prediction of arrhythmic events in ischemic and non-ischemic dilated cardiomyopathy

    No full text
    Background Recent evidence suggests that an implantable cardioverter defibrillator (ICD) in non-ischemic cardiomyopathy (NICM) may not offer mortality benefit. We aimed to investigate if etiology of heart failure and strain echocardiography can improve risk stratification of life threatening ventricular arrhythmia (VA) in heart failure patients. Methods This prospective multi-center follow-up study consecutively included NICM and ischemic cardiomyopathy (ICM) patients with left ventricular ejection fraction (LVEF) <40%. We assessed LVEF, global longitudinal strain (GLS) and mechanical dispersion (MD) by echocardiography. Ventricular arrhythmia was defined as sustained ventricular tachycardia, sudden cardiac death or appropriate shock from an ICD. Results We included 290 patients (67 ± 13 years old, 74% males, 207(71%) ICM). During 22 ± 12 months follow up, VA occurred in 32(11%) patients. MD and GLS were both markers of VA in patients with ICM and NICM, whereas LVEF was not (p = 0.14). MD independently predicted VA (HR: 1.19; 95% CI 1.08–1.32, p = 0.001), with excellent arrhythmia free survival in patients with MD 70 ms had highest VA incidence with an event rate of 16%/year. Conclusion Patients with NICM and normal MD had low arrhythmic event rate, comparable to the general population. Patients with ICM and MD >70 ms had the highest risk of VA. Combining heart failure etiology and strain echocardiography may classify heart failure patients in low, intermediate and high risk of VA and thereby aid ICD decision strategies
    corecore