384 research outputs found

    Circuit imaging biomarkers in preclinical and prodromal Parkinson's disease

    Get PDF
    Abstract Parkinson’s disease (PD) commences several years before the onset of motor features. Pathophysiological understanding of the pre-clinical or early prodromal stages of PD are essential for the development of new therapeutic strategies. Two categories of patients are ideal to study the early disease stages. Idiopathic rapid eye movement sleep behavior disorder (iRBD) represents a well-known prodromal stage of PD in which pathology is presumed to have reached the lower brainstem. The majority of patients with iRBD will develop manifest PD within years to decades. Another category encompasses non-manifest mutation carriers, i.e. subjects without symptoms, but with a known mutation or genetic variant which gives an increased risk of developing PD. The speed of progression from preclinical or prodromal to full clinical stages varies among patients and cannot be reliably predicted on the individual level. Clinical trials will require inclusion of patients with a predictable conversion within a limited time window. Biomarkers are necessary that can confirm pre-motor PD status and can provide information regarding lead time and speed of progression. Neuroimaging changes occur early in the disease process and may provide such a biomarker. Studies have focused on radiotracer imaging of the dopaminergic nigrostriatal system, which can be assessed with dopamine transporter (DAT) single photon emission computed tomography (SPECT). Loss of DAT binding represents an effect of irreversible structural damage to the nigrostriatal system. This marker can be used to monitor disease progression and identify individuals at specific risk for phenoconversion. However, it is known that changes in neuronal activity precede structural changes. Functional neuro-imaging techniques, such as 18F-2-fluoro-2-deoxy-D-glucose Positron Emission Tomography (18F-FDG PET) and functional magnetic resonance imaging (fMRI), can be used to model the effects of disease on brain networks when combined with advanced analytical methods. Because these changes occur early in the disease process, functional imaging studies are of particular interest in prodromal PD diagnosis. In addition, fMRI and 18F-FDG PET may be able to predict a specific future phenotype in prodromal cohorts, which is not possible with DAT SPECT. The goal of the current review is to discuss the network-level brain changes in pre-motor PD

    Occipital hypometabolism is a risk factor for conversion to Parkinson’s disease in isolated REM sleep behaviour disorder

    Get PDF
    Purpose: Isolated REM sleep behaviour disorder (iRBD) patients are at high risk of developing clinical syndromes of the α-synuclein spectrum. Progression markers are needed to determine the neurodegenerative changes and to predict their conversion. Brain imaging with 18F-FDG PET in iRBD is promising, but longitudinal studies are scarce. We investigated the regional brain changes in iRBD over time, related to phenoconversion.Methods: Twenty iRBD patients underwent two consecutive 18F-FDG PET brain scans and clinical assessments (3.7 ± 0.6 years apart). Seventeen patients also underwent 123I-MIBG and 123I-FP-CIT SPECT scans at baseline. Four subjects phenoconverted to Parkinson’s disease (PD) during follow-up. 18F-FDG PET scans were compared to controls with a voxel-wise single-subject procedure. The relationship between regional brain changes in metabolism and PD-related pattern scores (PDRP) was investigated.Results: Individual hypometabolism t-maps revealed three scenarios: (1) normal 18F-FDG PET scans at baseline and follow-up (N = 10); (2) normal scans at baseline but occipital or occipito-parietal hypometabolism at follow-up (N = 4); (3) occipital hypometabolism at baseline and follow-up (N = 6). All patients in the last group had pathological 123I-MIBG and 123I-FP-CIT SPECT. iRBD converters (N = 4) showed occipital hypometabolism at baseline (third scenario). At the group level, hypometabolism in the frontal and occipito-parietal regions and hypermetabolism in the cerebellum and limbic regions were progressive over time. PDRP z-scores increased over time (0.54 ± 0.36 per year). PDRP expression was driven by occipital hypometabolism and cerebellar hypermetabolism.Conclusions: Our results suggest that occipital hypometabolism at baseline in iRBD implies a short-term conversion to PD. This might help in stratification strategies for disease-modifying trials.</p

    Four-YearFollow-upof [F-18]Fluorodeoxyglucose Positron Emission Tomography-Based Parkinson's Disease-Related Pattern Expression in 20 Patients With Isolated Rapid Eye Movement Sleep Behavior Disorder Shows Prodromal Progression

    Get PDF
    Background: Isolated rapid eye movement sleep behavior disorder is known to be prodromal for alpha-synucleinopathies, such as Parkinson's disease (PD) and dementia with Lewy bodies. The [18F]fluorodeoxyglucose-positron emission tomography (PET)–based PD-related brain pattern can be used to monitor disease progression. Objective: We longitudinally investigated PD-related brain pattern expression changes in 20 subjects with isolated rapid eye movement sleep behavior disorder to investigate whether this may be a suitable technique to study prodromal PD progression in these patients and to identify potential phenoconverters. Methods: Subjects underwent two [18F]fluorodeoxyglucose-PET brain scans ~3.7 years apart, along with baseline and repeated motor, cognitive, and olfactory testing within roughly the same time frame. Results: At baseline, 8 of 20 (40%) subjects significantly expressed the PD-related brain pattern (with z scores above the receiver operating characteristic–determined threshold). At follow-up, six additional subjects exhibited significant PD-related brain pattern expression (70% in total). PD-related brain pattern expression increased in all subjects (P = 0.00008). Four subjects (20%), all with significant baseline PD-related brain pattern expression, phenoconverted to clinical PD. Conclusions: Suprathreshold PD-related brain pattern expression and greater score rate of change may signify greater shorter-term risk for phenoconversion. Our results support the use of serial PD-related brain pattern expression measurements as a prodromal PD progression biomarker in patients with isolated rapid eye movement sleep behavior disorder

    FDG-PET combined with learning vector quantization allows classification of neurodegenerative diseases and reveals the trajectory of idiopathic REM sleep behavior disorder

    Get PDF
    Background and Objectives 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) combined with principal component analysis (PCA) has been applied to identify disease-related brain patterns in neurodegenerative disorders such as Parkinson’s disease (PD), Dementia with Lewy Bodies (DLB) and Alzheimer’s disease (AD). These patterns are used to quantify functional brain changes at the single subject level. This is especially relevant in determining disease progression in idiopathic REM sleep behavior disorder (iRBD), a prodromal stage of PD and DLB. However, the PCA method is limited in discriminating between neurodegenerative conditions. More advanced machine learning algorithms may provide a solution. In this study, we apply Generalized Matrix Learning Vector Quantization (GMLVQ) to FDG-PET scans of healthy controls, and patients with AD, PD and DLB. Scans of iRBD patients, scanned twice with an approximate 4 year interval, were projected into GMLVQ space to visualize their trajectory. Methods We applied a combination of SSM/PCA and GMLVQ as a classifier on FDG-PET data of healthy controls, AD, DLB, and PD patients. We determined the diagnostic performance by performing a ten times repeated ten fold cross validation. We analyzed the validity of the classification system by inspecting the GMLVQ space. First by the projection of the patients into this space. Second by representing the axis, that span this decision space, into a voxel map. Furthermore, we projected a cohort of RBD patients, whom have been scanned twice (approximately 4 years apart), into the same decision space and visualized their trajectories. Results The GMLVQ prototypes, relevance diagonal, and decision space voxel maps showed metabolic patterns that agree with previously identified disease-related brain patterns. The GMLVQ decision space showed a plausible quantification of FDG-PET data. Distance traveled by iRBD subjects through GMLVQ space per year (i.e. velocity) was correlated with the change in motor symptoms per year (Spearman’s rho =0.62, P=0.004). Conclusion In this proof-of-concept study, we show that GMLVQ provides a classification of patients with neurodegenerative disorders, and may be useful in future studies investigating speed of progression in prodromal disease stages

    Rapid Eye Movement Sleep Behavior Disorder:Abnormal Cardiac Image and Progressive Abnormal Metabolic Brain Pattern

    Get PDF
    BACKGROUND: Isolated rapid eye movement sleep behavior disorder (iRBD) is prodromal for α-synucleinopathies. OBJECTIVE: The aim of this study was to determine whether pathological cardiac [123 I]meta-iodobenzylguanidine scintigraphy ([123 I]MIBG) is associated with progression of [18 F]fluorodeoxyglucose-positron emission tomography-based Parkinson's disease (PD)-related brain pattern (PDRP) expression in iRBD. METHODS: Seventeen subjects with iRBD underwent [18 F]fluorodeoxyglucose-positron emission tomography brain imaging twice ~3.6 years apart. In addition, [123 I]MIBG and [123 I]N-ω-fluoropropyl-2ÎČ-carbomethoxy-3ÎČ-(4-iodophenyl)nortropane single-photon emission computed tomography ([123 I]FP-CIT-SPECT) at baseline were performed. Olfactory, cognitive, and motor functions were tested annually. RESULTS: Twelve of 17 subjects had pathological [123 I]MIBG. At baseline, 6 of 12 of these expressed the PDRP (suprathreshold PDRP z score). At follow-up, 12 of 17 subjects had suprathreshold PDRP z scores, associated with pathological [123 I]MIBG in 92% and with pathological [123 I]FP-CIT-SPECT in 75%. Subjects with pathological [123 I]MIBG had higher PDRP z score change per year (P = 0.027). Three subjects phenoconverted to PD; all had pathological [123 I]MIBG and [123 I]FP-CIT-SPECT, suprathreshold baseline PDRP z scores, and hyposmia. CONCLUSIONS: Pathological [123 I]MIBG was associated with progressive and suprathreshold PDRP z scores at follow-up. Abnormal [123 I]MIBG likely identifies iRBD as prodromal PD earlier than pathological [123 I]FP-CIT-SPECT. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society

    Measurement of higher cumulants of net-charge multiplicity distributions in Au++Au collisions at sNN=7.7−200\sqrt{s_{_{NN}}}=7.7-200 GeV

    Full text link
    We report the measurement of cumulants (Cn,n=1
4C_n, n=1\ldots4) of the net-charge distributions measured within pseudorapidity (∣η∣<0.35|\eta|<0.35) in Au++Au collisions at sNN=7.7−200\sqrt{s_{_{NN}}}=7.7-200 GeV with the PHENIX experiment at the Relativistic Heavy Ion Collider. The ratios of cumulants (e.g. C1/C2C_1/C_2, C3/C1C_3/C_1) of the net-charge distributions, which can be related to volume independent susceptibility ratios, are studied as a function of centrality and energy. These quantities are important to understand the quantum-chromodynamics phase diagram and possible existence of a critical end point. The measured values are very well described by expectation from negative binomial distributions. We do not observe any nonmonotonic behavior in the ratios of the cumulants as a function of collision energy. The measured values of C1/C2=ÎŒ/σ2C_1/C_2 = \mu/\sigma^2 and C3/C1=Sσ3/ÎŒC_3/C_1 = S\sigma^3/\mu can be directly compared to lattice quantum-chromodynamics calculations and thus allow extraction of both the chemical freeze-out temperature and the baryon chemical potential at each center-of-mass energy.Comment: 512 authors, 8 pages, 4 figures, 1 table. v2 is version accepted for publication in Phys. Rev. C as a Rapid Communication. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Nuclear matter effects on J/ψJ/\psi production in asymmetric Cu+Au collisions at sNN\sqrt{s_{_{NN}}} = 200 GeV

    Full text link
    We report on J/ψJ/\psi production from asymmetric Cu+Au heavy-ion collisions at sNN\sqrt{s_{_{NN}}}=200 GeV at the Relativistic Heavy Ion Collider at both forward (Cu-going direction) and backward (Au-going direction) rapidities. The nuclear modification of J/ψJ/\psi yields in Cu++Au collisions in the Au-going direction is found to be comparable to that in Au++Au collisions when plotted as a function of the number of participating nucleons. In the Cu-going direction, J/ψJ/\psi production shows a stronger suppression. This difference is comparable in magnitude and has the same sign as the difference expected from shadowing effects due to stronger low-xx gluon suppression in the larger Au nucleus. The relative suppression is opposite to that expected from hot nuclear matter dissociation, since a higher energy density is expected in the Au-going direction.Comment: 349 authors, 10 pages, 4 figures, and 4 tables. Submitted to Phys. Rev. C. For v2, fixed LaTeX error in 3rd-to-last sentence. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
    • 

    corecore