239 research outputs found

    The Crystal Hotel: A Microfluidic Approach to Biomimetic Crystallization

    Get PDF
    A “crystal hotel” microfluidic device that allows crystal growth in confined volumes to be studied in situ is used to produce large calcite single crystals with predefined crystallographic orientation, microstructure, and shape by control of the detailed physical environment, flow, and surface chemistry. This general approach can be extended to form technologically important, nanopatterned single crystals

    A Reproducible Approach to the Assembly of Microcapillaries for Double Emulsion Production

    Get PDF
    Double emulsions attract considerable interest for their potential utility in applications as diverse as drug delivery, contrast agents, and compartmentalizing analytes for fluorescence-activated cell sorting (FACS). Microfluidic platforms provide a particularly elegant approach to generating these structures, but the construction of devices to provide reproducible and stable production of double emulsions remains challenging. PDMS-based systems require specialized surface treatments that are difficult to implement and lack long-term stability, and current glass microcapillary systems, while offering some advantages, lack flexible and reproducible methods for capillary alignment. This article describes a microcapillary-based approach that addresses these key challenges. Our approach utilizes translational stage elements and alignment end caps that are fixed in place once configured, rather than tightly fitting capillaries. This new approach enables alignment to within ± 10 µm and allows greater flexibility in choosing the dimensions of the capillary, which contributes to the size and stability of formation of the double emulsion. Importantly, it also allows the user to compensate for the deviations from ideal shape that occur in pulled glass capillaries, which has been a source of failure with previous methods. A detailed description of the critical design and operational parameters that affect double emulsion generation in these capillary microfluidic devices is provided

    Strain-relief by single dislocation loops in calcite crystals grown on self-assembled monolayers

    Get PDF
    Most of our knowledge of dislocation-mediated stress relaxation during epitaxial crystal growth comes from the study of inorganic heterostructures. Here we use Bragg coherent diffraction imaging to investigate a contrasting system, the epitaxial growth of calcite (CaCO3) crystals on organic self-assembled monolayers, where these are widely used as a model for biomineralization processes. The calcite crystals are imaged to simultaneously visualize the crystal morphology and internal strain fields. Our data reveal that each crystal possesses a single dislocation loop that occupies a common position in every crystal. The loops exhibit entirely different geometries to misfit dislocations generated in conventional epitaxial thin films and are suggested to form in response to the stress field, arising from interfacial defects and the nanoscale roughness of the substrate. This work provides unique insight into how self-assembled monolayers control the growth of inorganic crystals and demonstrates important differences as compared with inorganic substrates

    Physical Confinement Promoting Formation of Cu2O−Au Heterostructures with Au Nanoparticles Entrapped within Crystalline Cu2O Nanorods

    Get PDF
    Building on the application of cuprite (Cu2O) in solar energy technologies and reports of increased optical absorption caused by metal-to-semiconductor energy transfer, a confinement-based strategy was developed to fabricate high aspect ratio, crystalline Cu2O nanorods containing entrapped gold nanoparticles (Au nps). Cu2O was crystallized within the confines of track-etch membrane pores, where this physical, assembly based method eliminates the necessity of specific chemical interactions to achieve a well-defined metal−semiconductor interface. With high-resolution scanning/transmission electron microscopy (S/TEM) and tomography, we demonstrate the encasement of the majority of Au nps by crystalline Cu2O and show crystalline Cu2O−Au interfaces that are free of extended amorphous regions. Such nanocrystal heterostructures are good candidates for studying the transport physics of metal/semiconductor hybrids for optoelectronic applications

    3D Visualisation of Additive Occlusion and Tunable Full-Spectrum Fluorescence in Calcite

    Get PDF
    From biomineralization to synthesis, organic additives provide an effective means of controlling crystallisation processes. There is growing evidence that these additives are often occluded within the crystal lattice, where this promises an elegant means of creating nanocomposites and tuning physical properties. Here, we use the incorporation of sulfonated fluorescent dyes to gain new understanding of additive occlusion in calcite (CaCO3), and to link morphological changes to occlusion mechanisms. We demonstrate that these additives are incorporated within specific zones, as defined by the growth conditions, and show how occlusion can govern changes in crystal shape. Fluorescence spectroscopy and lifetime imaging microscopy also show that the dyes experience unique local environments within different zones. Our strategy was then extended to simultaneously incorporate mixtures of dyes, whose fluorescence cascade creates calcite nanoparticles that fluoresce white. This offers a simple strategy for generating biocompatible and stable fluorescent nanoparticles whose output can be tuned as required

    A Facile Method for Generating Worm-like Micelles with Controlled Lengths and Narrow Polydispersity

    Get PDF
    This work shows that highly uniform worm micelles formed by polymerisation induced self-assembly can be obtained via simple postsynthesis sonication. Importantly, this straightforward and versatile strategy yields exceptionally monodisperse worms with tunable aspect ratios ranging from 7.2 to 17.6 by simply changing the sonication time

    A Quantitative Evaluation of Electron Beam Sensitivity in Calcite Nanoparticles

    Get PDF
    We present analysis and quantification of electron beam sensitivity in calcite in order to identify damage thresholds under which bright field TEM imaging, selected area electron diffraction and scanning TEM should be performed. A large reduction in damage under TEM was found when operating at 300 kV rather than 200 kV, suggesting that the irradiation induced degradation of calcite to calcium oxide is dominated by radiolysis. At 300 kV, bright field STEM imaging was able to retain lattice information at higher fluences than was possible using TEM and, although damage was still seen to occur, there was no observation of the formation of crystalline calcium oxide

    Calcite Kinetics for Spiral Growth and Two-Dimensional Nucleation

    Get PDF
    [Image: see text] Calcite crystals grow by means of molecular steps that develop on {10.4} faces. These steps can arise stochastically via two-dimensional (2D) nucleation or emerge steadily from dislocations to form spiral hillocks. Here, we determine the kinetics of these two growth mechanisms as a function of supersaturation. We show that calcite crystals larger than ∼1 μm favor spiral growth over 2D nucleation, irrespective of the supersaturation. Spirals prevail beyond this length scale because slow boundary layer diffusion creates a low surface supersaturation that favors the spiral mechanism. Sub-micron crystals favor 2D nucleation at high supersaturations, although diffusion can still limit the growth of nanoscopic crystals. Additives can change the dominant mechanism by impeding spiral growth or by directly promoting 2D nucleation

    Evaluation of microflow configurations for scale inhibition and serial X-ray diffraction analysis of crystallization processes

    No full text
    The clean and reproducible conditions provided by microfluidic devices are ideal sample environments for in situ analyses of chemical and biochemical reactions and assembly processes. However, the small size of microchannels makes investigating the crystallization of poorly soluble materials on-chip challenging due to crystal nucleation and growth that result in channel fouling and blockage. Here, we demonstrate a reusable insert-based microfluidic platform for serial X-ray diffraction analysis and examine scale formation in response to continuous and segmented flow configurations across a range of temperatures. Under continuous flow, scale formation on the reactor walls begins almost immediately on mixing of the crystallizing species, which over time results in occlusion of the channel. Depletion of ions at the start of the channel results in reduced crystallization towards the end of the channel. Conversely, segmented flow can control crystallization, so it occurs entirely within the droplet. Consequently, the spatial location within the channel represents a temporal point in the crystallization process. Whilst each method can provide useful crystallographic information, time-resolved information is lost when reactor fouling occurs and changes the solution conditions with time. The flow within a single device can be manipulated to give a broad range of information addressing surface interaction or solution crystallization

    Dynamic Crystallization Pathways of Polymorphic Pharmaceuticals Revealed in Segmented Flow with Inline Powder X-ray Diffraction

    Get PDF
    Understanding the transitions between polymorphs is essential in the development of strategies for manufacturing and maximizing the efficiency of pharmaceuticals. However, this can be extremely challenging: crystallization can be influenced by subtle changes in environment, such as temperature and mixing intensity or even imperfections in the crystallizer walls. Here, we highlight the importance of in situ measurements in understanding crystallization mechanisms, where a segmented flow crystallizer was used to study the crystallization of the pharmaceuticals urea: barbituric acid (UBA) and carbamazepine (CBZ). The reactor provides highly reproducible reaction conditions, while in situ synchrotron powder X-ray diffraction (PXRD) enables us to monitor the evolution of this system. UBA has two polymorphs of almost equivalent free-energy and so is typically obtained as a polymorphic mixture. In situ PXRD analysis uncovered a progression of polymorphs from UBA III to the thermodynamic polymorph UBA I, where different positions along the length of the tubular flow crystallizer correspond to different reaction times. Addition of UBA I seed crystals modified this pathway such that only UBA I was observed throughout, while transformation from UBA III into UBA I still occurred in the presence of UBA III seeds. Information regarding the mixing-dependent kinetics of the CBZ form II to III transformation was also uncovered in a series of seeded and unseeded flow crystallization runs, despite atypical habit expression. These results illustrate the importance of coupling controlled reaction environments with in situ XRD to study the phase relationships in polymorphic materials
    corecore