349 research outputs found
Four-dimensional electrical resistivity imaging for monitoring pumping-induced saltwater intrusion in a coastal aquifer
Conventional views of saltwater intrusion (SWI), where a basal saline wedge extends inland below fresh groundwater, can be complicated by the influence of saltwater cells in the upper part of aquifers in areas affected by tidal cycles. Distinguishing the contribution of each saltwater source may prove fundamental for well design and resource management. Application of time-lapse electrical resistivity imaging (ERI) during a 32-h pumping test in a pristine unconfined coastal sand aquifer, affected by strong tidal ranges (>2 m), aimed to evaluate the potential of the method to characterize the source of induced SWI in four dimensions (three dimensions and time). Water level monitoring during the test revealed that at the end of pumping, the upper 2 m of the aquifer had dewatered in the vicinity of the well field, reversing hydraulic gradients between the aquifer and the sea. This induced SI, with mixing models of well head water quality suggesting that saline water contributions to total discharge rose from 4 % to 8 %. ERI results reflected dewatering through an increase in resistivity in the upper 2-6 m of the aquifer, while a decline in resistivity, relative to background conditions, occurred immediately below this, reflecting the migration of saline water through the upper layers of the aquifer to the pumping well. By contrast no change in resistivity occurred at depth, indicating no significant change in contribution from the basal saline water to discharge. Test findings suggest that future water resource development at the site should focus on close monitoring of shallow pumping, or pumping from deeper parts of the aquifer, while more generally demonstrating the value of time-lapse geophysical methods in informing coastal water resource management
Shocked monazite chronometry: integrating microstructural and in situ isotopic age data for determining precise impact ages
Monazite is a robust geochronometer and occurs in a wide range of rock types. Monazite also records shock deformation from meteorite impact but the effects of impact-related microstructures on the UâThâPb systematics remain poorly constrained. We have, therefore, analyzed shock-deformed monazite grains from the central uplift of the Vredefort impact structure, South Africa, and impact melt from the Araguainha impact structure, Brazil, using electron backscatter diffraction, electron microprobe elemental mapping, and secondary ion mass spectrometry (SIMS). Crystallographic orientation mapping of monazite grains from both impact structures reveals a similar combination of crystal-plastic deformation features, including shock twins, planar deformation bands and neoblasts. Shock twins were documented in up to four different orientations within individual monazite grains, occurring as compound and/or type one twins in (001), (100), (10 1 ÂŻ) , {110}, { 212 } , and type two (irrational) twin planes with rational shear directions in [ 0 1 ÂŻ 1 ÂŻ ] and [ 1 ÂŻ 1 ÂŻ 0 ]. SIMS UâThâPb analyses of the plastically deformed parent domains reveal discordant age arrays, where discordance scales with increasing plastic strain. The correlation between discordance and strain is likely a result of the formation of fast diffusion pathways during the shock event. Neoblasts in granular monazite domains are strain-free, having grown during the impact events via consumption of strained parent grains. Neoblastic monazite from the Inlandsee leucogranofels at Vredefort records a 207Pb/206Pb age of 2010 ± 15 Ma (2Ï, n = 9), consistent with previous impact age estimates of 2020 Ma. Neoblastic monazite from Araguainha impact melt yield a Concordia age of 259 ± 5 Ma (2Ï, n = 7), which is consistent with previous impact age estimates of 255 ± 3 Ma. Our results demonstrate that targeting discrete microstructural domains in shocked monazite, as identified through orientation mapping, for in situ UâThâPb analysis can date impact-related deformation. Monazite is, therefore, one of the few high-temperature geochronometers that can be used for accurate and precise dating of meteorite impacts
Four-dimensional electrical resistivity imaging for monitoring pumping-induced saltwater intrusion in a coastal aquifer
Conventional views of saltwater intrusion (SWI), where a basal saline wedge extends inland below fresh groundwater, can be complicated by the influence of saltwater cells in the upper part of aquifers in areas affected by tidal cycles. Distinguishing the contribution of each saltwater source may prove fundamental for well design and resource management. Application of time-lapse electrical resistivity imaging (ERI) during a 32-h pumping test in a pristine unconfined coastal sand aquifer, affected by strong tidal ranges (>2 m), aimed to evaluate the potential of the method to characterize the source of induced SWI in four dimensions (three dimensions and time). Water level monitoring during the test revealed that at the end of pumping, the upper 2 m of the aquifer had dewatered in the vicinity of the well field, reversing hydraulic gradients between the aquifer and the sea. This induced SI, with mixing models of well head water quality suggesting that saline water contributions to total discharge rose from 4 % to 8 %. ERI results reflected dewatering through an increase in resistivity in the upper 2-6 m of the aquifer, while a decline in resistivity, relative to background conditions, occurred immediately below this, reflecting the migration of saline water through the upper layers of the aquifer to the pumping well. By contrast no change in resistivity occurred at depth, indicating no significant change in contribution from the basal saline water to discharge. Test findings suggest that future water resource development at the site should focus on close monitoring of shallow pumping, or pumping from deeper parts of the aquifer, while more generally demonstrating the value of time-lapse geophysical methods in informing coastal water resource management
A novel lung explant model for the ex vivo study of efficacy and mechanisms of anti-influenza drugs
Influenza A virus causes considerable morbidity and mortality largely because of a lack of effective antiviral drugs. Viral neuraminidase inhibitors, which inhibit viral release from the infected cell, are currently the only approved drugs for influenza, but have recently been shown to be less effective than previously thought. Growing resistance to therapies that target viral proteins has led to increased urgency in the search for novel anti-influenza compounds. However, discovery and development of new drugs have been restricted because of differences in susceptibility to influenza between animal models and humans and a lack of translation between cell culture and in vivo measures of efficacy. To circumvent these limitations, we developed an experimental approach based on ex vivo infection of human bronchial tissue explants and optimized a method of flow cytometric analysis to directly quantify infection rates in bronchial epithelial tissues. This allowed testing of the effectiveness of TVB024, a vATPase inhibitor that inhibits viral replication rather than virus release, and to compare efficacy with the current frontline neuraminidase inhibitor, oseltamivir. The study showed that the vATPase inhibitor completely abrogated epithelial cell infection, virus shedding, and the associated induction of proinflammatory mediators, whereas oseltamivir was only partially effective at reducing these mediators and ineffective against innate responses. We propose, therefore, that this explant model could be used to predict the efficacy of novel anti-influenza compounds targeting diverse stages of the viral replication cycle, thereby complementing animal models and facilitating progression of new drugs into clinical trials
Recommended from our members
Which Spreading Depolarizations Are Deleterious To Brain Tissue?
Spreading depolarizations (SDs) are profound disruptions of cellular homeostasis that slowly propagate through gray matter and present an extraordinary metabolic challenge to brain tissue. Recent work has shown that SDs occur commonly in human patients in the neurointensive care setting and have established a compelling case for their importance in the pathophysiology of acute brain injury. The International Conference on Spreading Depolarizations (iCSD) held in Boca Raton, Florida, in September of 2018 included a discussion session focused on the question of "Which SDs are deleterious to brain tissue?" iCSD is attended by investigators studying various animal species including invertebrates, in vivo and in vitro preparations, diseases of acute brain injury and migraine, computational modeling, and clinical brain injury, among other topics. The discussion included general agreement on many key issues, but also revealed divergent views on some topics that are relevant to the design of clinical interventions targeting SDs. A draft summary of viewpoints offered was then written by a multidisciplinary writing group of iCSD members, based on a transcript of the session. Feedback of all discussants was then formally collated, reviewed and incorporated into the final document. It is hoped that this report will stimulate collection of data that are needed to develop a more nuanced understanding of SD in different pathophysiological states, as the field continues to move toward effective clinical interventions
Recommended from our members
Novel Respiratory Disability Score Predicts COPD Exacerbations and Mortality in the SPIROMICS Cohort.
RationaleSome COPD patients develop extreme breathlessness, decreased exercise capacity and poor health status yet respiratory disability is poorly characterized as a distinct phenotype.ObjectiveTo define respiratory disability in COPD based on available functional measures and to determine associations with risk for exacerbations and death.MethodsWe analyzed baseline data from a multi-center observational study (SPIROMICS). This analysis includes 2332 participants (472 with severe COPD, 991 with mild/moderate COPD, 726 smokers without airflow obstruction and 143 non-smoking controls).MeasurementsWe defined respiratory disability by â„4 of 7 criteria: mMRC dyspnea scale â„3; Veterans Specific Activity Questionnaire <5; 6-minute walking distance <250 m; St George's Respiratory Questionnaire activity domain >60; COPD Assessment Test >20; fatigue (FACIT-F Trial Outcome Index) <50; SF-12 <20.ResultsUsing these criteria, respiratory disability was identified in 315 (13.5%) participants (52.1% female). Frequencies were severe COPD 34.5%; mild-moderate COPD 11.2%; smokers without obstruction 5.2% and never-smokers 2.1%. Compared with others, participants with disability had more emphysema (13.2 vs. 6.6%) and air-trapping (37.0 vs. 21.6%) on HRCT (P<0.0001). Using principal components analysis to derive a disability score, two factors explained 71% of variance, and a cut point -1.0 reliably identified disability. This disability score independently predicted future exacerbations (Ă=0.34; CI 0.12, 0.64; P=0.003) and death (HR 2.97; CI 1.54, 5.75; P=0.001). Thus, participants with disability by this criterion had almost three times greater mortality compared to those without disability.ConclusionOur novel SPIROMICS respiratory disability score in COPD was associated with worse airflow obstruction as well as airway wall thickening, lung parenchymal destruction and certain inflammatory biomarkers. The disability score also proved to be an independent predictor of future exacerbations and death. These findings validate disability as an important phenotype in the spectrum of COPD
Recommended from our members
Novel Respiratory Disability Score Predicts COPD Exacerbations and Mortality in the SPIROMICS Cohort.
RationaleSome COPD patients develop extreme breathlessness, decreased exercise capacity and poor health status yet respiratory disability is poorly characterized as a distinct phenotype.ObjectiveTo define respiratory disability in COPD based on available functional measures and to determine associations with risk for exacerbations and death.MethodsWe analyzed baseline data from a multi-center observational study (SPIROMICS). This analysis includes 2332 participants (472 with severe COPD, 991 with mild/moderate COPD, 726 smokers without airflow obstruction and 143 non-smoking controls).MeasurementsWe defined respiratory disability by â„4 of 7 criteria: mMRC dyspnea scale â„3; Veterans Specific Activity Questionnaire <5; 6-minute walking distance <250 m; St George's Respiratory Questionnaire activity domain >60; COPD Assessment Test >20; fatigue (FACIT-F Trial Outcome Index) <50; SF-12 <20.ResultsUsing these criteria, respiratory disability was identified in 315 (13.5%) participants (52.1% female). Frequencies were severe COPD 34.5%; mild-moderate COPD 11.2%; smokers without obstruction 5.2% and never-smokers 2.1%. Compared with others, participants with disability had more emphysema (13.2 vs. 6.6%) and air-trapping (37.0 vs. 21.6%) on HRCT (P<0.0001). Using principal components analysis to derive a disability score, two factors explained 71% of variance, and a cut point -1.0 reliably identified disability. This disability score independently predicted future exacerbations (Ă=0.34; CI 0.12, 0.64; P=0.003) and death (HR 2.97; CI 1.54, 5.75; P=0.001). Thus, participants with disability by this criterion had almost three times greater mortality compared to those without disability.ConclusionOur novel SPIROMICS respiratory disability score in COPD was associated with worse airflow obstruction as well as airway wall thickening, lung parenchymal destruction and certain inflammatory biomarkers. The disability score also proved to be an independent predictor of future exacerbations and death. These findings validate disability as an important phenotype in the spectrum of COPD
- âŠ