3,126 research outputs found
AGAPEROS: Searching for variable stars in the LMC Bar with the Pixel Method. I. Detection, astrometry and cross-identification
We extend the work developed in previous papers on microlensing with a
selection of variable stars. We use the Pixel Method to select variable stars
on a set of 2.5 x 10**6 pixel light curves in the LMC Bar presented elsewhere.
The previous treatment was done in order to optimise the detection of long
timescale variations (larger than a few days) and we further optimise our
analysis for the selection of Long Timescale and Long Period Variables
(LT&LPV). We choose to perform a selection of variable objects as comprehensive
as possible, independent of periodicity and of their position on the colour
magnitude diagram. We detail the different thresholds successively applied to
the light curves, which allow to produce a catalogue of 632 variable objects.
We present a table with the coordinate of each variable, its EROS magnitudes at
one epoch and an indicator of blending in both colours, together with a finding
chart.
A cross-correlation with various catalogues shows that 90% of those variable
objects were undetected before, thus enlarging the sample of LT&LPV previously
known in this area by a factor of 10. Due to the limitations of both the Pixel
Method and the data set, additional data -- namely a longer baseline and near
infrared photometry -- are required to further characterise these variable
stars, as will be addressed in subsequent papers.Comment: 11 pages with 10 figure
Preliminary vegetation map of the Espenberg Peninsula, Alaska, based on an Earth Resources Technology Satellite image
There are no author-identified significant results in this report
Density mapping with weak lensing and phase information
The available probes of the large scale structure in the Universe have
distinct properties: galaxies are a high resolution but biased tracer of mass,
while weak lensing avoids such biases but, due to low signal-to-noise ratio,
has poor resolution. We investigate reconstructing the projected density field
using the complementarity of weak lensing and galaxy positions. We propose a
maximum-probability reconstruction of the 2D lensing convergence with a
likelihood term for shear data and a prior on the Fourier phases constructed
from the galaxy positions. By considering only the phases of the galaxy field,
we evade the unknown value of the bias and allow it to be calibrated by lensing
on a mode-by-mode basis. By applying this method to a realistic simulated
galaxy shear catalogue, we find that a weak prior on phases provides a good
quality reconstruction down to scales beyond l=1000, far into the noise domain
of the lensing signal alone.Comment: 11 pages, 9 figures, published in MNRA
Cosmological constraints from the convergence 1-point probability distribution
We examine the cosmological information available from the 1-point
probability distribution (PDF) of the weak-lensing convergence field, utilizing
fast L-PICOLA simulations and a Fisher analysis. We find competitive
constraints in the - plane from the convergence PDF with
pixels compared to the cosmic shear power spectrum with an
equivalent number of modes (). The convergence PDF also partially
breaks the degeneracy cosmic shear exhibits in that parameter space. A joint
analysis of the convergence PDF and shear 2-point function also reduces the
impact of shape measurement systematics, to which the PDF is less susceptible,
and improves the total figure of merit by a factor of , depending on the
level of systematics. Finally, we present a correction factor necessary for
calculating the unbiased Fisher information from finite differences using a
limited number of cosmological simulations.Comment: 10 pages, 5 figure
- …