10 research outputs found

    ETMR-05: Single-cell transcriptomics of ETMR reveals developmental cellular programs and tumor-pericyte communications in the microenvironment [Abstract]

    Get PDF
    BACKGROUND: Embryonal tumors with multilayered rosettes (ETMR) are pediatric brain tumors bearing a grim prognosis, despite intensive multimodal therapeutic approaches. Insights into cellular heterogeneity and cellular communication of tumor cells with cells of the tumor microenvironment (TME), by applying single-cell (sc) techniques, potentially identify mechanisms of therapy resistance and target-directed treatment approaches. MATERIAL AND METHODS: To explore ETMR cell diversity, we used single-cell RNA sequencing (scRNA-seq) in human (n=2) and murine ETMR (transgenic mode; n=4) samples, spatial transcriptomics, 2D and 3D cultures (including co-cultures with TME cells), multiplex immunohistochemistry and drug screens. RESULTS: ETMR microenvironment is composed of tumor and non-tumor cell types. The ETMR malignant compartment harbour cells representing distinct transcriptional metaprograms, (NSC-like, NProg-like and Neuroblast-like), mirroring embryonic neurogenic cell states and fuelled by neurogenic pathways (WNT, SHH, Hippo). The ETMR TME is composed of oligodendrocyte and neuronal progenitor cells, neuroblasts, microglia, and pericytes. Tumor-specific ligand-receptor interaction analysis showed enrichment of intercellular communication between NProg-like ETMR cells and pericytes (PC). Functional network analyses reveal ETMR-PC interactions related to stem-cell signalling and extracellular matrix (ECM) organization, involving factors of the WNT, BMP, and CxCl12 networks. Results from ETMR-PC co-culture and spatial transcriptomics pointed to a pivotal role of pericytes in keeping ETMR in a germinal neurogenic state, enriched in stem-cell signalling. Drug screening considering cellular heterogeneity and cellular communication suggested novel therapeutic approaches. CONCLUSION: ETMR demonstrated diversity in the microenvironment, with enrichment of cell-cell communications with pericytes, supporting stem-cell signalling and interfering in the organization of the tumor extracellular matrix. Targeting ETMR-PC interactions might bring new opportunities for target-directed therapy

    Single-cell transcriptomics identifies potential cells of origin of MYC rhabdoid tumors

    Get PDF
    Rhabdoid tumors (RT) are rare and highly aggressive pediatric neoplasms. Their epigenetically-driven intertumoral heterogeneity is well described; however, the cellular origin of RT remains an enigma. Here, we establish and characterize different genetically engineered mouse models driven under the control of distinct promoters and being active in early progenitor cell types with diverse embryonic onsets. From all models only Sox2-positive progenitor cells give rise to murine RT. Using single-cell analyses, we identify distinct cells of origin for the SHH and MYC subgroups of RT, rooting in early stages of embryogenesis. Intra- and extracranial MYC tumors harbor common genetic programs and potentially originate from fetal primordial germ cells (PGCs). Using PGC specific Smarcb1 knockout mouse models we validate that MYC RT originate from these progenitor cells. We uncover an epigenetic imbalance in MYC tumors compared to PGCs being sustained by epigenetically-driven subpopulations. Importantly, treatments with the DNA demethylating agent decitabine successfully impair tumor growth in vitro and in vivo. In summary, our work sheds light on the origin of RT and supports the clinical relevance of DNA methyltransferase inhibitors against this disease

    The Growing Relevance of Immunoregulation in Pediatric Brain Tumors

    No full text
    Pediatric brain tumors are genetically heterogeneous solid neoplasms. With a prevailing poor prognosis and widespread resistance to conventional multimodal therapy, these aggressive tumors are the leading cause of childhood cancer-related deaths worldwide. Advancement in molecular research revealed their unique genetic and epigenetic characteristics and paved the way for more defined prognostication and targeted therapeutic approaches. Furthermore, uncovering the intratumoral metrics on a single-cell level placed non-malignant cell populations such as innate immune cells into the context of tumor manifestation and progression. Targeting immune cells in pediatric brain tumors entails unique challenges but promising opportunities to improve outcome. Herein, we outline the current understanding of the role of the immune regulation in pediatric brain tumors

    Smarcb1 Loss Results in a Deregulation of esBAF Binding and Impacts the Expression of Neurodevelopmental Genes

    No full text
    The murine esBAF complex plays a major role in the regulation of gene expression during stem cell development and differentiation. As one of its core subunits, Smarcb1 is indispensable for its function and its loss is connected to neurodevelopmental disorders and participates in the carcinogenesis of entities such as rhabdoid tumours. We explored how Smarcb1 regulates gene programs in murine embryonic stem cells (mESC) and in this way orchestrates differentiation. Our data underline the importance of Smarcb1 expression and function for the development of the nervous system along with basic cellular functions, such as cell adhesion and cell organisation. Using ChIP-seq, we were able to portray the consequences of Smarcb1 knockdown (kd) for the binding of esBAF and PRC2 as well as its influence on histone marks H3K27me3, H3K4me3 and H3K27ac. Their signals are changed in gene and enhancer regions of genes connected to nervous system development and offers a plausible explanation for changes in gene expression. Further, we describe a group of genes that are, despite increased BAF binding, suppressed after Smarcb1 kd by mechanisms independent of PRC2 function

    Smarcb1 Loss Results in a Deregulation of esBAF Binding and Impacts the Expression of Neurodevelopmental Genes

    Full text link
    The murine esBAF complex plays a major role in the regulation of gene expression during stem cell development and differentiation. As one of its core subunits, Smarcb1 is indispensable for its function and its loss is connected to neurodevelopmental disorders and participates in the carcinogenesis of entities such as rhabdoid tumours. We explored how Smarcb1 regulates gene programs in murine embryonic stem cells (mESC) and in this way orchestrates differentiation. Our data underline the importance of Smarcb1 expression and function for the development of the nervous system along with basic cellular functions, such as cell adhesion and cell organisation. Using ChIP-seq, we were able to portray the consequences of Smarcb1 knockdown (kd) for the binding of esBAF and PRC2 as well as its influence on histone marks H3K27me3, H3K4me3 and H3K27ac. Their signals are changed in gene and enhancer regions of genes connected to nervous system development and offers a plausible explanation for changes in gene expression. Further, we describe a group of genes that are, despite increased BAF binding, suppressed after Smarcb1 kd by mechanisms independent of PRC2 function

    An extracellular vesicle-related gene expression signature identifies high-risk patients in medulloblastoma

    No full text
    BACKGROUND: Medulloblastoma (MB) is a malignant brain tumor in childhood. It comprises 4 subgroups with different clinical behaviors. The aim of this study was to characterize the transcriptomic landscape of MB, both at the level of individual tumors as well as in large patient cohorts. METHODS: We used a combination of single-cell transcriptomics, cell culture models and biophysical methods such as nanoparticle tracking analysis and electron microscopy to investigate intercellular communication in the MB tumor niche. RESULTS: Tumor cells of the sonic hedgehog (SHH)–MB subgroup show a differentiation blockade. These cells undergo extensive metabolic reprogramming. The gene expression profiles of individual tumor cells show a partial convergence with those of tumor-associated glial and immune cells. One possible cause is the transfer of extracellular vesicles (EVs) between cells in the tumor niche. We were able to detect EVs in co-culture models of MB tumor cells and oligodendrocytes. We also identified a gene expression signature, EVS, which shows overlap with the proteome profile of large oncosomes from prostate cancer cells. This signature is also present in MB patient samples. A high EVS expression is one common characteristic of tumors that occur in high-risk patients from different MB subgroups or subtypes. CONCLUSIONS: With EVS, our study uncovered a novel gene expression signature that has a high prognostic significance across MB subgroups

    The long non-coding RNA HOTAIRM1 promotes tumor aggressiveness and radiotherapy resistance in glioblastoma

    No full text
    Glioblastoma is the most common malignant primary brain tumor. To date, clinically relevant biomarkers are restricted to isocitrate dehydrogenase (IDH) gene 1 or 2 mutations and O6-methylguanine DNA methyltransferase (MGMT) promoter methylation. Long non-coding RNAs (lncRNAs) have been shown to contribute to glioblastoma pathogenesis and could potentially serve as novel biomarkers. The clinical significance of HOXA Transcript Antisense RNA, Myeloid-Specific 1 (HOTAIRM1) was determined by analyzing HOTAIRM1 in multiple glioblastoma gene expression data sets for associations with prognosis, as well as, IDH mutation and MGMT promoter methylation status. Finally, the role of HOTAIRM1 in glioblastoma biology and radiotherapy resistance was characterized in vitro and in vivo. We identified HOTAIRM1 as a candidate lncRNA whose up-regulation is significantly associated with shorter survival of glioblastoma patients, independent from IDH mutation and MGMT promoter methylation. Glioblastoma cell line models uniformly showed reduced cell viability, decreased invasive growth and diminished colony formation capacity upon HOTAIRM1 down-regulation. Integrated proteogenomic analyses revealed impaired mitochondrial function and determination of reactive oxygen species (ROS) levels confirmed increased ROS levels upon HOTAIRM1 knock-down. HOTAIRM1 knock-down decreased expression of transglutaminase 2 (TGM2), a candidate protein implicated in mitochondrial function, and knock-down of TGM2 mimicked the phenotype of HOTAIRM1 down-regulation in glioblastoma cells. Moreover, HOTAIRM1 modulates radiosensitivity of glioblastoma cells both in vitro and in vivo. Our data support a role for HOTAIRM1 as a driver of biological aggressiveness, radioresistance and poor outcome in glioblastoma. Targeting HOTAIRM1 may be a promising new therapeutic approach
    corecore