22 research outputs found

    Starke Handwerkerinnen

    Get PDF
    Energieeffiziente Dienstleistungen in den Bereichen GebĂ€udesanierung, MobilitĂ€t und betriebliche Effizienz sind zentrale Elemente des Klima schutzes. Die Umsetzung solcher Maßnahmen wurde im Rahmen eines Pilotprojekts durch Frauen aus der Dienstleistungs- und Energieforschung sowie dem Handwerk durchgefĂŒhrt

    Literatur-Rundschau

    Get PDF
    Klaus Harpprecht: Die GrĂ€fin. Marion Dönhoff. Eine Biografie (Wolfgang R. Langenbucher)Gisela Friedrichsen: Im Zweifel gegen die Angeklagten. Der Fall Pascal – Geschichte eines Skandals (Melanie Verhovnik)Liane Rothenberger: Von elitĂ€r bis populĂ€r? Die Programmentwicklung im deutsch-französischen Kulturkanal arte (Victor Henle)Karl Nikolaus Renner: Fernsehjournalismus. Entwurf einer Theorie des kommunikativen Handelns (Jochen Kölsch)Stefan Piasecki: „Das Schaufenster des Schreckens in den Tagen des Zorns.“ Eine inhaltliche Analyse der Darstellung von Islam, Islamismus und islamischer ReligiositĂ€t in der Berichterstattung ĂŒber den Karikaturenstreit (Nicole Stroth)Dominik Burkard: Presse und Medien. In: Erwin Gatz (Hg.): Geschichte des kirchlichen Lebens in den deutschsprachigen LĂ€ndern seit dem Ende des 18. Jahrhunderts, Band VIII: Laien in der Kirche (Ferdinand Oertel)

    A Soft Robotic Actuator System for in vivo Modeling of Normal Pressure Hydrocephalus

    Full text link
    OBJECTIVE: The intracranial pressure (ICP) affects the dynamics of cerebrospinal fluid (CSF) and its waveform contains information that is of clinical importance in medical conditions such as hydrocephalus. Active manipulation of the ICP waveform could enable the investigation of pathophysiological processes altering CSF dynamics and driving hydrocephalus. METHODS: A soft robotic actuator system for intracranial pulse pressure amplification was developed to model normal pressure hydrocephalus in vivo. Different end actuators were designed for intraventricular implantation and manufactured by applying cyclic tensile loading on soft rubber tubing. Their mechanical properties were investigated, and the type that achieved the greatest pulse pressure amplification in an in vitro simulator of CSF dynamics was selected for application in vivo. A hydraulic actuation device based on a linear voice coil motor was developed to enable automated and fast operation of the end actuators. The combined system was validated in an acute ovine pilot in vivo study. RESULTS: In vitro results show that variations in the used materials and manufacturing settings altered the end actuator's dynamic properties, such as the pressure-volume characteristics. In the in vivo model, a cardiac-gated actuation volume of 0.125 mL at a heart rate of 62 bpm caused an increase of 205% in mean peak-to-peak amplitude but only an increase of 1.3% in mean ICP. CONCLUSION: The introduced soft robotic actuator system is capable of ICP waveform manipulation. SIGNIFICANCE: Continuous amplification of the intracranial pulse pressure could enable in vivo modeling of normal pressure hydrocephalus and shunt system testing under pathophysiological conditions to improve therapy for hydrocephalus

    16p11.2 600 kb Duplications confer risk for typical and atypical Rolandic epilepsy

    Get PDF
    Rolandic epilepsy (RE) is the most common idiopathic focal childhood epilepsy. Its molecular basis is largely unknown and a complex genetic etiology is assumed in the majority of affected individuals. The present study tested whether six large recurrent copy number variants at 1q21, 15q11.2, 15q13.3, 16p11.2, 16p13.11 and 22q11.2 previously associated with neurodevelopmental disorders also increase risk of RE. Our association analyses revealed a significant excess of the 600 kb genomic duplication at the 16p11.2 locus (chr16: 29.5-30.1 Mb) in 393 unrelated patients with typical (n = 339) and atypical (ARE; n = 54) RE compared with the prevalence in 65 046 European population controls (5/393 cases versus 32/65 046 controls; Fisher's exact test P = 2.83 × 10−6, odds ratio = 26.2, 95% confidence interval: 7.9-68.2). In contrast, the 16p11.2 duplication was not detected in 1738 European epilepsy patients with either temporal lobe epilepsy (n = 330) and genetic generalized epilepsies (n = 1408), suggesting a selective enrichment of the 16p11.2 duplication in idiopathic focal childhood epilepsies (Fisher's exact test P = 2.1 × 10−4). In a subsequent screen among children carrying the 16p11.2 600 kb rearrangement we identified three patients with RE-spectrum epilepsies in 117 duplication carriers (2.6%) but none in 202 carriers of the reciprocal deletion. Our results suggest that the 16p11.2 duplication represents a significant genetic risk factor for typical and atypical R

    An archaeal compound as a driver of Parkinson’s disease pathogenesis

    Get PDF
    Patients with Parkinson’s disease (PD) exhibit differences in their gut microbiomes compared to healthy individuals. Although differences have most commonly been described in the abundances of bacterial taxa, changes to viral and archaeal populations have also been observed. Mechanistic links between gut microbes and PD pathogenesis remain elusive but could involve molecules that promote α-synuclein aggregation. Here, we show that 2-hydroxypyridine (2-HP) represents a key molecule for the pathogenesis of PD. We observe significantly elevated 2-HP levels in faecal samples from patients with PD or its prodrome, idiopathic REM sleep behaviour disorder (iRBD), compared to healthy controls. 2-HP is correlated with the archaeal species Methanobrevibacter smithii and with genes involved in methane metabolism, and it is detectable in isolate cultures of M. smithii. We demonstrate that 2-HP is selectively toxic to transgenic α-synuclein overexpressing yeast and increases α-synuclein aggregation in a yeast model as well as in human induced pluripotent stem cell derived enteric neurons. It also exacerbates PD-related motor symptoms, α-synuclein aggregation, and striatal degeneration when injected intrastriatally in transgenic mice overexpressing human α-synuclein. Our results highlight the effect of an archaeal molecule in relation to the gut-brain axis, which is critical for the diagnosis, prognosis, and treatment of PD.

    Drought Propagation in Semi-Arid River Basins in Latin America: Lessons from Mexico to the Southern Cone

    Get PDF
    Detecting droughts as early as possible is important in avoiding negative impacts on economy, society, and environment. To improve drought monitoring, we studied drought propagation (i.e., the temporal manifestation of a precipitation deficit on soil moisture and streamflow). We used the Standardized Precipitation Evapotranspiration Index (SPEI), Standardized Streamflow Index (SSI), and Standardized Soil Moisture Index (SSMI) in three drought-prone regions: Sonora (Mexico), Maipo (Chile), and Mendoza-Tunuyán (Argentina) to study their temporal interdependence. For this evaluation we use precipitation, temperature, and streamflow data from gauges that are managed by governmental institutions, and satellite-based soil moisture from the ESA CCI SM v03.3 combined data set. Results confirm that effective drought monitoring should be carried out (1) at river-basin scale, (2) including several variables, and (3) considering hydro-meteorological processes from outside its boundaries

    Towards the "Perfect" Shunt: Historical Vignette, Current Efforts, and Future Directions

    Full text link
    As a concept, drainage of excess fluid volume in the cranium has been around for more than 1000 years. Starting with the original decompression-trepanation of Abulcasis to modern programmable shunt systems, to other nonshunt-based treatments such as endoscopic third ventriculostomy and choroid plexus cauterization, we have come far as a field. However, there are still fundamental limitations that shunts have yet to overcome: namely posture-induced over- and underdrainage, the continual need for valve opening pressure especially in pediatric cases, and the failure to reinstall physiologic intracranial pressure dynamics. However, there are groups worldwide, in the clinic, in industry, and in academia, that are trying to ameliorate the current state of the technology within hydrocephalus treatment. This chapter aims to provide a historical overview of hydrocephalus, current challenges in shunt design, what members of the community have done and continue to do to address these challenges, and finally, a definition of the “perfect” shunt is provided and how the authors are working toward it

    A Soft Robotic Actuator System for in vivo Modeling of Normal Pressure Hydrocephalus

    No full text
    Objective : The intracranial pressure (ICP) affects the dynamics of cerebrospinal fluid (CSF) and its waveform contains information that is of clinical importance in medical conditions such as hydrocephalus. Active manipulation of the ICP waveform could enable the investigation of pathophysiological processes altering CSF dynamics and driving hydrocephalus. Methods : A soft robotic actuator system for intracranial pulse pressure amplification was developed to model normal pressure hydrocephalus in vivo . Different end actuators were designed for intraventricular implantation and manufactured by applying cyclic tensile loading on soft rubber tubing. Their mechanical properties were investigated, and the type that achieved the greatest pulse pressure amplification in an in vitro simulator of CSF dynamics was selected for application in vivo . A hydraulic actuation device based on a linear voice coil motor was developed to enable automated and fast operation of the end actuators. The combined system was validated in an acute ovine pilot in vivo study. Results : In vitro results show that variations in the used materials and manufacturing settings altered the end actuator's dynamic properties, such as the pressure-volume characteristics. In the in vivo model, a cardiac-gated actuation volume of 0.125 mL at a heart rate of 62 bpm caused an increase of 205% in mean peak-to-peak amplitude but only an increase of 1.3% in mean ICP. Conclusion : The introduced soft robotic actuator system is capable of ICP waveform manipulation. Significance : Continuous amplification of the intracranial pulse pressure could enable in vivo modeling of normal pressure hydrocephalus and shunt system testing under pathophysiological conditions to improve therapy for hydrocephalus.ISSN:0018-9294ISSN:1558-253
    corecore