27 research outputs found

    Chirp coded ultrasonic pulses used for scanning acoustic microscopy

    Get PDF
    Embargo of 24 months from date of publishing on accepted manuscript version. Link to publisher's version:Proceedings of the 2017 IEEE International Ultrasonics Symposium (IUS) Copyright notice:“© © 20xx IEEE policy"In the present study, chirp coded pulses are investigated with respect to high frequency imaging. These pulses were used drive broadband polymer transducers assembled from an adhesive-free layer-be-layer deposition method. The image quality obtained from using a long chirp coded pulse was compared with images generated from shorter pulses. This includes the Ricker wavelet and the square pulse most commonly used for scanning acoustic microscopes

    Adhesive free PVDF copolymer focused transducers for high frequency acoustic imaging

    Get PDF
    The present study has demonstrated to produce a reliable PVDF copolymer focused transducers from a layer-by-layer deposition method by engraving milled spherical cavies in a PEI polymer substrate. The proposed method which process P(VDF-TrFE) from the fluid phase, is adhesive-free in the sense that it does not require any additional adhesive layers for material binding. The transducer was acoustically characterized by pulse/echo ultrasonic measurements. The transducer center frequency was estimated to 48.5 MHz with 94.2% bandwidth. The two-dimensional scanning showed very detailed surface variations with the expected resolution

    Multiple Damage Detection in PZT Sensor Using Dual Point Contact Method

    Get PDF
    Lead Zirconate Titanate (PZT) is used to make ultrasound transducers, sensors, and actuators due to its large piezoelectric coefficient. Several micro-defects develop in the PZT sensor due to delamination, corrosion, huge temperature fluctuation, etc., causing a decline in its performance. It is thus necessary to identify, locate, and quantify the defects. Non-Destructive Structural Health Monitoring (SHM) is the most optimal and economical evaluation method. Traditional ultrasound SHM techniques have a huge impedance mismatch between air and solid material, and most of the popular signal processing methods define time series signals in only one domain, which provides sub-optimal results for non-stationary signals. Thus, to improve the accuracy of detection, the point contact excitation and detection method is implemented to determine the interaction of ultrasonic waves with micro-scale defects in the PZT. The signal generated from this method being nonstationary in nature, it requires signal processing with changeable resolutions at different times and frequencies. The Haar Discrete Wavelet Transformation (DWT) is applied to the time series data obtained from the coulomb coupling setup. Using the above process, defects up to 100 µm in diameter could be successfully distinguished

    Modeling Microwave Scattering From Rough Sea Ice Surfaces

    Get PDF
    In this paper, COMSOL Multiphysics® was used to simulate the microwave scattering from the rough sea ice surface. A nonperiodic model and a periodic model were built. The nonperiodic model considers the rough surface of finite length and introduces a tapered incident wave. In this model, the strategy of total and scattered-field decomposition (TSFD) was used to formulate the finite-element method (FEM). The computational area was split into a scattered-field region and a total-field region so that the incident wave can be impressed closer to the rough sea ice surface. The periodic model considers the periodic rough surface by introducing Floquet periodic boundary conditions. The incident wave is excited by the port boundary condition so this model is based on the total-field formulation. The two models were tested to simulate the radar cross section (RCS) of scattering from sea ice surfaces at C band (frequency 5.4GHz). The results were compared with the Small Perturbation Method (SPM) and good agreements were achieved

    Using Silver Nano-Particle Ink in Electrode Fabrication of High Frequency Copolymer Ultrasonic Transducers: Modeling and Experimental Investigation

    Get PDF
    Published version. Source at http://dx.doi.org/10.3390/s150409210.High frequency polymer-based ultrasonic transducers are produced with electrodes thicknesses typical for printed electrodes obtained from silver (Ag) nano-particle inks. An analytical three-port network is used to study the acoustic effects imposed by a thick electrode in a typical layered transducer configuration. Results from the network model are compared to experimental findings for the implemented transducer configuration, to obtain a better understanding of acoustical effects caused by the additional printed mass loading. The proposed investigation might be supportive of identification of suitable electrode-depositing methods. It is also believed to be useful as a feasibility study for printed Ag-based electrodes in high frequency transducers, which may reduce both the cost and production complexity of these devices

    Numerical Analysis of Microwave Scattering from Layered Sea Ice Based on the Finite Element Method

    Get PDF
    Source at https://doi.org/10.3390/rs10091332.A two-dimensional scattering model based on the Finite Element Method (FEM) is built for simulating the microwave scattering of sea ice, which is a layered medium. The scattering problem solved by the FEM is formulated following a total- and scattered-field decomposition strategy. The model set-up is first validated with good agreements by comparing the results of the FEM with those of the small perturbation method and the method of moment. Subsequently, the model is applied to two cases of layered sea ice to study the effect of subsurface scattering. The first case is newly formed sea ice which has scattering from both air–ice and ice–water interfaces. It is found that the backscattering has a strong oscillation with the variation of sea ice thickness. The found oscillation effects can increase the difficulty of retrieving the thickness of newly formed sea ice from the backscattering data. The second case is first-year sea ice with C-shaped salinity profiles. The scattering model accounts for the variations in the salinity profile by approximating the profile as consisting of a number of homogeneous layers. It is found that the salinity profile variations have very little influence on the backscattering for both C- and L-bands. The results show that the sea ice can be considered to be homogeneous with a constant salinity value in modelling the backscattering and it is difficult to sense the salinity profile of sea ice from the backscattering data, because the backscattering is insensitive to the salinity profile

    Numerical Simulation of Microwave Scattering from Sea Ice Based on The Finite Element Method

    Get PDF
    Embargo of 24 months from date of publishing on accepted manuscript version.Link to publisher's version:Geoscience and Remote Sensing Symposium (IGARSS), 2016 IEEE International Copyright notice: “© © 20xx IEEE policy"In this paper, a 2-dimensional scattering model for sea ice based on the Finite Element Method (FEM) is presented. The scattering problem is formulated following a physics-separate strategy. The wave in the air domain is expressed by the scattered field formulation, while the wave in the sea ice domain is expressed by the total field formulation. The two separate physics and formulations are coupled through the boundary conditions at the air-sea ice interface. The proposed FEM is tested for simulating the radar cross section (RCS) of homogeneous sea ice at C and L bands. By comparing the results of the FEM with the Small Perturbation Method (SPM), good agreements are achieve

    Laser-Generated Scholte Waves in Floating Microparticles

    Get PDF
    This study aims to demonstrate the generation and detection of Scholte waves inside polystyrene microparticles. This was proven using both experimental analysis and COMSOL simulation. Microspheres of different sizes were excited optically with a pulsed laser (532 nm), and the acoustic signals were detected using a transducer (40 MHz). On analyzing the laser-generated ultrasound signals, the results obtained experimentally and from COMSOL are in close agreement both in the time and frequency domain. A simplified analysis of Scholte wave generation by laser irradiation for homogeneous, isotropic microspheres is presented. The theoretical wave velocity of the Scholte wave was calculated and found close to our experimental results. A representation of pressure wave motion showing the Scholte wave generation is presented at different times

    High-frequency acoustic imaging using adhesive-free polymer transducer

    Get PDF
    The piezoelectric polymer PVDF and its copolymers have a long history as transducer materials for medical and biological applications. An efficient use of these polymers can potentially both lower the production cost and offer an environment-friendly alternative for medical transducers which today is dominated by piezoelectric ceramics containing lead. The main goal of the current work has been to compare the image quality of a low-cost in-house transducers made from the copolymer P(VDF-TrFE) to a commercial PVDF transducer. Several test objects were explored with the transducers used in a scanning acoustic microscope, including a human articular cartilage sample, a coin surface, and an etched metal film with fine line structures. To evaluate the image quality, Cand B-scan images were obtained from the recorded time series, and compared in terms of resolution, SNR, point-spread function, and depth imaging capability. The investigation is believed to provide useful information about both the strengths and limitations of low-cost polymer transducers

    High frequency copolymer ultrasonic transducer array of size-effective elements

    Get PDF
    Source at https://doi.org/10.1088/1361-665X/aa91b7.A layer-by-layer deposition method for producing dual-layer ultrasonic transducers from piezoelectric copolymers has been developed. The method uses a combination of customized and standard processing to obtain 2D array transducers with electrical connection of the individual elements routed directly to the rear of the substrate. A numerical model was implemented to study basic parameters effecting the transducer characteristics. Key elements of the array were characterized and evaluated, demonstrating its viability of 2D imaging. Signal reproducibility of the prototype array was studied by characterizing the variations of the center frequency (≈42 MHz) and bandwidth (≈25 MHz) of the acoustic. Object identification was also tested and parameterized by acoustic-field beamwidth as well as proper scan step size. Simple tests to illustrate a benefit of multi-element scan on lowering the inspection time were conducted. Structural imaging of the test structure underneath multi-layered wave media (glass plate and distilled water) was also performed. The prototype presented in this work is an important step towards realizing an inexpensive, compact array of individually operated copolymer transducers that can serve in a fast/volumetric high frequency (HF) ultrasonic scanning platform
    corecore