10 research outputs found

    Effect of Nitrogen Fertilizer Dose and Application Timing on Yield and Nitrogen Use Efficiency of Irrigated Hybrid Rice under Semi-Arid Conditions

    Get PDF
    Nitrogen fertilizer is the major input in rice production and the optimum rate and application timing management assure profitability and sustainability of the production system. This study aims to investigate hybrid rice response to different nitrogen fertilizer levels and the timing of application and quantify hybrid rice nitrogen use efficiency. Field experiments were conducted during the dry and the wet seasons 2016 at the research station of Africa Rice at Ndiaye in Senegal. Six nitrogen rates (0, 60, 90, 120, 150 and 180 kg N/ha) and three hybrid rice varieties (AR031H, AR032H, AR033H) and one inbred variety (Sahel108) and two nitrogen fertilizer application timings (three split and four split) were combined within a split-split plot design. The results showed significant effect of nitrogen rate and timing on rice grain yield that varied from 4.10 to 11.58 tons/ha and most the yield components. Rice grain yield exhibited curvilinear relationship with the applied nitrogen rates during the dry season under both nitrogen application timings and a linear relationship during the wet season under three splits. Nitrogen rate of 150 kg/ha was revealed optimum with best performance achieved by the Hybrid rice AR033H. Hybrid rice genotypes achieved greater nitrogen use efficiency compared to the inbred rice Sahel108. Hence, hybrid rice genotypes, and nitrogen rate of 150 kg/ha applied in four splits could be recommended to improve rice production and food security for achieving self-sufficiency in rice as targeted by Senegal and the neighboring countries

    Effects of Alternate Wetting and Drying Irrigation Regime and Nitrogen Fertilizer on Yield and Nitrogen Use Efficiency of Irrigated Rice in the Sahel

    Get PDF
    The objectives of this study were to investigate water saving strategies in the paddy field and to evaluate the performance of some of the newly released rice varieties. Field experiments were conducted at Fanaye in the Senegal River Valley during two rice growing seasons in 2015. Three irrigation regimes ((i) continuous flooding, (ii) trigging irrigation at soil matric potential (SMP) of 30 kPa, (iii) trigging irrigation at SMP of 60 kPa) were tested in an irrigated lowland rice field. Irrigation regimes (ii) and (iii) are alternate wetting and drying (AWD) cycles. Four inbred rice varieties (NERICA S-21, NERICA S-44, Sahel 210 and Sahel 222) and one hybrid rice (Hybrid AR032H) were evaluated under five nitrogen fertilizer rates (0, 50, 100, 150 and 200 kg N ha−1). The results showed that rice yield varied from 0.9 to 12 t ha−1. The maximum yield of 12 t ha−1 was achieved by NERICA S-21 under AWD 30 kPa at 150 kg N ha−1. The AWD irrigation management at 30 kPa resulted in increasing rice yield, rice water use and nitrogen use efficiency and reducing the irrigation applications by 27.3% in comparison with continuous flooding. AWD30 kPa could be adopted as a water saving technology for water productivity under paddy production in the Senegal River Middle Valley. Additional research should be conducted in the upper Valley, where soils are sandier and water is less available, for the sustainability and the adoption of the irrigation water saving practices across the entire Senegal River Valley

    Developing fertilizer recommendations for rice in Sub-Saharan Africa, achievements and opportunities

    No full text
    Improving agricultural productivity to keep pace with the fast-growing food demand is a huge challenge for sub-Saharan Africa (SSA). Fertilizer is a powerful productivity-enhancing input; nevertheless, farmers of SSA use only 5–9 kg ha−1 of fertilizer, which is ten times lesser than Latin America and Asia (50 and 80 kg ha−1, respectively). Rice (Oryza sativa) is one of the most important food crops of SSA, and its consumption is growing faster than any other commodity in Africa. Rice-based systems have high potential for improving food production through an efficient management of fertilizers. The biophysical environment, cropping systems and socio-economic status of farmers including market opportunities are the main factors for developing appropriate fertilizer recommendations. Many research efforts have been invested in different countries to develop fertilizer recommendation for rice. However, the diversity of rice ecologies, the type and the cost of fertilizers available on local market are the main constraints for development of blanket recommendations of fertilizer usually applied in many countries. Here, we make a reviews of the progress made on the development of fertilizer recommendations for rice-based systems in SSA. The utilization of the new concepts and decisions support tools for development of fertilizer recommendation and the main achievements and weakness are discussed. The opportunities offered by the new concepts, modeling and decision support tools are discussed in a regional strategic approach for better management of fertilizers in the diversified ecologies of rice-based systems

    Brazilian Flora 2020: Leveraging the power of a collaborative scientific network

    No full text
    International audienceThe shortage of reliable primary taxonomic data limits the description of biological taxa and the understanding of biodiversity patterns and processes, complicating biogeographical, ecological, and evolutionary studies. This deficit creates a significant taxonomic impediment to biodiversity research and conservation planning. The taxonomic impediment and the biodiversity crisis are widely recognized, highlighting the urgent need for reliable taxonomic data. Over the past decade, numerous countries worldwide have devoted considerable effort to Target 1 of the Global Strategy for Plant Conservation (GSPC), which called for the preparation of a working list of all known plant species by 2010 and an online world Flora by 2020. Brazil is a megadiverse country, home to more of the world's known plant species than any other country. Despite that, Flora Brasiliensis, concluded in 1906, was the last comprehensive treatment of the Brazilian flora. The lack of accurate estimates of the number of species of algae, fungi, and plants occurring in Brazil contributes to the prevailing taxonomic impediment and delays progress towards the GSPC targets. Over the past 12 years, a legion of taxonomists motivated to meet Target 1 of the GSPC, worked together to gather and integrate knowledge on the algal, plant, and fungal diversity of Brazil. Overall, a team of about 980 taxonomists joined efforts in a highly collaborative project that used cybertaxonomy to prepare an updated Flora of Brazil, showing the power of scientific collaboration to reach ambitious goals. This paper presents an overview of the Brazilian Flora 2020 and provides taxonomic and spatial updates on the algae, fungi, and plants found in one of the world's most biodiverse countries. We further identify collection gaps and summarize future goals that extend beyond 2020. Our results show that Brazil is home to 46,975 native species of algae, fungi, and plants, of which 19,669 are endemic to the country. The data compiled to date suggests that the Atlantic Rainforest might be the most diverse Brazilian domain for all plant groups except gymnosperms, which are most diverse in the Amazon. However, scientific knowledge of Brazilian diversity is still unequally distributed, with the Atlantic Rainforest and the Cerrado being the most intensively sampled and studied biomes in the country. In times of “scientific reductionism”, with botanical and mycological sciences suffering pervasive depreciation in recent decades, the first online Flora of Brazil 2020 significantly enhanced the quality and quantity of taxonomic data available for algae, fungi, and plants from Brazil. This project also made all the information freely available online, providing a firm foundation for future research and for the management, conservation, and sustainable use of the Brazilian funga and flora

    Stratified analyses refine association between TLR7 rare variants and severe COVID-19

    No full text
    Summary: Despite extensive global research into genetic predisposition for severe COVID-19, knowledge on the role of rare host genetic variants and their relation to other risk factors remains limited. Here, 52 genes with prior etiological evidence were sequenced in 1,772 severe COVID-19 cases and 5,347 population-based controls from Spain/Italy. Rare deleterious TLR7 variants were present in 2.4% of young (<60 years) cases with no reported clinical risk factors (n = 378), compared to 0.24% of controls (odds ratio [OR] = 12.3, p = 1.27 × 10−10). Incorporation of the results of either functional assays or protein modeling led to a pronounced increase in effect size (ORmax = 46.5, p = 1.74 × 10−15). Association signals for the X-chromosomal gene TLR7 were also detected in the female-only subgroup, suggesting the existence of additional mechanisms beyond X-linked recessive inheritance in males. Additionally, supporting evidence was generated for a contribution to severe COVID-19 of the previously implicated genes IFNAR2, IFIH1, and TBK1. Our results refine the genetic contribution of rare TLR7 variants to severe COVID-19 and strengthen evidence for the etiological relevance of genes in the interferon signaling pathway
    corecore