14 research outputs found

    Heavy neutrinos at future linear e+^+e^- colliders

    No full text
    Neutrinos are among the most mysterious particles in nature. Their mass hierarchy and oscillations, as well as their antiparticle properties, are being intensively studied in experiments around the world. Moreover, in many models of physics beyond the Standard Model, the baryon asymmetry or the dark matter density in the Universe are explained by introducing new species of neutrinos. Among others, heavy neutrinos of Dirac or Majorana nature were proposed to solve open questions in High Energy Physics. Such neutrinos with masses above the EW scale could be produced at future linear e+^+e^- colliders, like the Compact LInear Collider (CLIC) or the International Linear Collider (ILC). We studied the possibility of observing decays of heavy Dirac and Majorana neutrinos in the qqqq\ell final state with ILC running at 500 GeV and 1 TeV, and CLIC at 3 TeV. The analysis is based on the Whizard event generation and fast simulation of detector response with Delphes. Neutrinos with masses from 200 GeV to 3.2 TeV were considered. We estimated the limits on the production cross sections, interpreted them in terms of the neutrino-lepton coupling parameter VN2V_{\ell N}^{2} (effectively the neutrino mixing angle) and compared them with current limits coming from the LHC running at 13 TeV, as well as the expected limits from future hadron colliders. The limits for the future lepton colliders, extending down to the coupling values of 10710610^{-7} - 10^{-6}, are stricter than any other limit estimates published so far

    Hunting for Heavy Neutral Leptons at Future Lepton Colliders

    No full text
    Neutrinos are the most elusive particles known. Heavier sterile neutrinos mixing with the Standard Model partners might solve the mystery of the baryon asymmetry of the universe and take part in the mass generation mechanism for the light neutrinos. Future lepton colliders, including e+e− Higgs factories, as well as multi-TeV electron and muon machines, will provide the farthest search reach for such neutrinos in the mass range from above the Z pole into the multi-TeV regime. In our contribution, we will discuss the future lepton collider search potential for such particles in their prompt decays and present a new approach to use kinematic variables to constrain the nature of heavy neutrinos, probing their Majorana or Dirac character

    Searches for invisible scalar decays at CLIC

    No full text
    The Compact LInear Collider (CLIC) is a proposed TeV-scale high-luminosity electron-positron collider at CERN. The first CLIC running stage, at 380 GeV, will focus on precision Higgs boson and top quark studies while the main aim of the subsequent high-energy stages, at 1.5 TeV and 3 TeV, is to extend the sensitivity of CLIC to different Beyond the Standard Model (BSM) scenarios. We studied the prospects for measuring invisible Higgs boson and additional heavy scalar decays using CLIC data at 380 GeV and 1.5 TeV. The analysis is based on the W HIZARD event generator, with fast simulation of the CLIC detector response parametrised by the D ELPHES package. We present the expected limits for the invisible decays of the 125 GeV Higgs boson, the cross section limits for production of an additional neutral Higgs scalar, assuming its invisible decays, and limits on the mixing angle between the SM-like Higss boson and the new scalar of the "dark sector" in the framework of the vector-fermion dark matter model

    Heavy Neutrinos at Future Linear e+ee^+e^- Colliders

    No full text
    With the Standard Model being unable to describe the observed baryon asymmetry or dark matter density in the universe, many models of New Physics introduce heavy neutrino species as a possible explanation for these effects. Dirac or Majorana neutrinos with masses above the electroweak scale could be produced at future linear e+e- colliders, such as the Compact LInear Collider (CLIC) or the International Linear Collider (ILC). We studied the possibility of observing production and decays of the heavy neutrinos in the qqlqql final state at ILC running at 500 GeV and 1 TeV and CLIC running at 3 TeV. The analysis is based on the WHIZARD event generation and fast simulation of the detector response with DELPHES. Dirac and Majorana neutrinos with masses from 200 GeV to 3.2 TeV are considered. Estimated limits on the production cross sections and on the neutrino-lepton coupling are compared with the current limits coming from the LHC running at 13 TeV, as well as the expected future limits from hadron colliders. The obtained results are stricter than any other limit estimates published so far

    Dark matter searches with mono-photon signature at future e+^+e^- colliders

    No full text
    As any e+e− scattering process can be accompanied by a hard photon emission from the initial state radiation, the analysis of the energy spectrum and angular distributions of those photons can be used to search for hard processes with an invisible final state. Thus high energy e+e− colliders offer a unique possibility for the most general search of Dark matter based on the mono-photon signature. We consider production of DM particles via a mediator at the International Linear Collider (ILC) and Compact Linear Collider (CLIC) experiments taking into account detector effects within the D ELPHES fast simulation framework. Limits on the light DM production in a generic model are set for a wide range of mediator masses and widths. For mediator masses up to the centre-of-mass energy of the collider, results from the mono-photon analysis are more stringent than the limits expected from direct resonance searches in Standard Model decay channels

    The WHIZARD generator: Status report, News and Plans

    No full text
    We give a status report on new developments in the WHIZARD event generator,including NLO electroweak automation for e+e-, loop-induced processes, POWHEGmatching, new features in the UFO interface and the current development formatching between exclusive photon radiation and fixed-order LO/NLO EWcorrections. We report on several bug fixes relevant for certain aspects of theILC250 MC mass production, especially on the normalization of matching EPAsamples with full-matrix element samples. Finally, we mention some ongoingwork on efficiency improvements regarding parallelization of matrix elementsand phase space sampling, as well as plans to revive the top thresholdsimulation

    The International Linear Collider: Report to Snowmass 2021

    No full text
    The International Linear Collider (ILC) is on the table now as a new global energy-frontier accelerator laboratory taking data in the 2030s. The ILC addresses key questions for our current understanding of particle physics. It is based on a proven accelerator technology. Its experiments will challenge the Standard Model of particle physics and will provide a new window to look beyond it. This document brings the story of the ILC up to date, emphasizing its strong physics motivation, its readiness for construction, and the opportunity it presents to the US and the global particle physics community

    The International Linear Collider:Report to Snowmass 2021

    No full text
    corecore