10 research outputs found

    Produktion af biogas fra husdyrgødning og afgrøder i økologisk landbrug

    Get PDF
    Formålet med undersøgelsen har været at samle erfaringer med biogasproduktion, næringstofflow og energiproduktion af økologisk græs, triticale, vikke, lupin, kvæggylle og dybstrøelse fra kvægstalde

    Response timescales of the magnetotail current sheet during a geomagnetic storm: Global MHD simulations

    Get PDF
    The response of the Earth’s magnetotail current sheet to the external solar wind driver is highly time-dependent and asymmetric. For example, the current sheet twists in response to variations in the B y component of the interplanetary magnetic field (IMF), and is hinged by the dipole tilt. Understanding the timescales over which these asymmetries manifest is of particular importance during geomagnetic storms when the dynamics of the tail control substorm activity. To investigate this, we use the Gorgon MHD model to simulate a geomagnetic storm which commenced on 3 May 2014, and was host to multiple B y and B z reversals and a prolonged period of southward IMF driving. We find that the twisting of the current sheet is well-correlated to IMF B y throughout the event, with the angle of rotation increasing linearly with downtail distance and being more pronounced when the tail contains less open flux. During periods of southward IMF the twisting of the central current sheet responds most strongly at a timelag of ∼ 100 min for distances beyond 20 R E , consistent with the 1–2 h convection timescale identified in the open flux content. Under predominantly northward IMF the response of the twisting is bimodal, with the strongest correlations between 15 and 40 R E downtail being at a shorter timescale of ∼ 30 min consistent with that estimated for induced B y due to wave propagation, compared to a longer timescale of ∼ 3 h further downtail again attributed to convection. This indicates that asymmetries in the magnetotail communicated by IMF B y are influenced mostly by global convection during strong solar wind driving, but that more prompt induced B y effects can dominate in the near-Earth tail and during periods of weaker driving. These results provide new insight into the characteristic timescales of solar wind-magnetosphere-ionosphere coupling

    Indtryk fra Plantekongres 2019

    Get PDF
    Oplevelser og indtryk som kan bruges fagligt eller bare give stof til eftertank

    Dose-based optimisation for multi-leaf collimator tracking during radiation therapy.

    No full text
    Motion in the patient anatomy causes a reduction in dose delivered to the target, while increasing dose to healthy tissue. Multi-leaf collimator (MLC) tracking has been clinically implemented to adapt dose delivery to account for intrafraction motion. Current methods shift the planned MLC aperture in the direction of motion, then optimise the new aperture based on the difference in fluence. The drawback of these methods is that 3D dose, a function of patient anatomy and MLC aperture sequence, is not properly accounted for. To overcome the drawback of current fluence-based methods, we have developed and investigated real-time adaptive MLC tracking based on dose optimisation. A novel MLC tracking algorithm, dose optimisation, has been developed which accounts for the moving patient anatomy by optimising the MLC based on the dose delivered during treatment, simulated using a simplified dose calculation algorithm. The MLC tracking with dose optimisation method was applied in silico to a prostate cancer VMAT treatment dataset with observed intrafraction motion. Its performance was compared to MLC tracking with fluence optimisation and, as a baseline, without MLC tracking. To quantitatively assess performance, we computed the dose error and 3D γ failure rate (2 mm/2%) for each fraction and method. Dose optimisation achieved a γ failure rate of (4.7 ± 1.2)% (mean and standard deviation) over all fractions, which was significantly lower than fluence optimisation (7.5 ± 2.9)% (Wilcoxon sign-rank test p < 0.01). Without MLC tracking, a γ failure rate of (15.3 ± 12.9)% was achieved. By considering the accumulation of dose in the moving anatomy during treatment, dose optimisation is able to optimise the aperture to actively target regions of underdose while avoiding overdose

    Optimising multi-target multileaf collimator tracking using real-time dose for locally advanced prostate cancer patients.

    No full text
    Objective. The accuracy of radiotherapy for patients with locally advanced cancer is compromised by independent motion of multiple targets. To date, MLC tracking approaches have used 2D geometric optimisation where the MLC aperture shape is simply translated to correspond to the target's motion, which results in sub-optimal delivered dose. To address this limitation, a dose-optimised multi-target MLC tracking method was developed and evaluated through simulated locally advanced prostate cancer treatments.Approach. A dose-optimised multi-target tracking algorithm that adapts the MLC aperture to minimise 3D dosimetric error was developed for moving prostate and static lymph node targets. A fast dose calculation algorithm accumulated the planned dose to the prostate and lymph node volumes during treatment in real time, and the MLC apertures were recalculated to minimise the difference between the delivered and planned dose with the included motion. Dose-optimised tracking was evaluated by simulating five locally advanced prostate plans and three prostate motion traces with a relative interfraction displacement. The same simulations were performed using geometric-optimised tracking and no tracking. The dose-optimised, geometric-optimised, and no tracking results were compared with the planned doses using a 2%/2 mmγcriterion.Main results. The mean dosimetric error was lowest for dose-optimised MLC tracking, withγ-failure rates of 12% ± 8.5% for the prostate and 2.2% ± 3.2% for the nodes. Theγ-failure rates for geometric-optimised MLC tracking were 23% ± 12% for the prostate and 3.6% ± 2.5% for the nodes. When no tracking was used, theγ-failure rates were 37% ± 28% for the prostate and 24% ± 3.2% for the nodes.Significance. This study developed a dose-optimised multi-target MLC tracking method that minimises the difference between the planned and delivered doses in the presence of intrafraction motion. When applied to locally advanced prostate cancer, dose-optimised tracking showed smaller errors than geometric-optimised tracking and no tracking for both the prostate and nodes

    Magnetospheric Studies: A Requirement for Addressing Interdisciplinary Mysteries in the Ice Giant Systems

    No full text

    The Scientific Foundations of Forecasting Magnetospheric Space Weather

    No full text
    corecore