23 research outputs found

    Analysis on the Filament Structure Evolution in Reset Transition of Cu/HfO2/Pt RRAM Device

    Get PDF
    The resistive switching (RS) process of resistive random access memory (RRAM) is dynamically correlated with the evolution process of conductive path or conductive filament (CF) during its breakdown (rupture) and recovery (reformation). In this study, a statistical evaluation method is developed to analyze the filament structure evolution process in the reset operation of Cu/HfO₂/Pt RRAM device. This method is based on a specific functional relationship between the Weibull slopes of reset parameters' distributions and the CF resistance (R on). The CF of the Cu/HfO₂/Pt device is demonstrated to be ruptured abruptly, and the CF structure of the device has completely degraded in the reset point. Since no intermediate states are generated in the abrupt reset process, it is quite favorable for the reliable and stable one-bit operation in RRAM device. Finally, on the basis of the cell-based analytical thermal dissolution model, a Monte Carlo (MC) simulation is implemented to further verify the experimental results. This work provides inspiration for RRAM reliability and performance design to put RRAM into practical application

    A Simple Hydrophilic Palladium(II) Complex as a Highly Efficient Catalyst for Room Temperature Aerobic Suzuki Coupling Reactions in Aqueous Media

    No full text
    A study on room temperature Suzuki cross-coupling in an aqueous medium was carried out using a simple hydrophilic palladium (II) complex, trans-PdCl2(NH2CH2COOH)2 as catalyst in the presence of K2CO3 in air. This approach with a comparatively inexpensive and hydrophilic catalyst, mild reaction condition and aqueous media exhibits excellent catalytic activity towards the Suzuki coupling of aryl bromides and arylboronic acids, and good yields were obtained in the Suzuki coupling of activated aryl chlorides

    Investigation on the Conductive Filament Growth Dynamics in Resistive Switching Memory via a Universal Monte Carlo Simulator

    Get PDF
    Abstract In resistive random access memories, modeling conductive filament growing dynamics is important to understand the switching mechanism and variability. In this paper, a universal Monte Carlo simulator is developed based on a cell switching model and a tunneling-based transport model. Driven by external electric field, the growing process of the nanoscale filament occurring in the gap region is actually dominated by cells’ conductive/insulating switching, modeled through a phenomenological physics-based probability function. The electric transport through the partially formed CF is considered as current tunneling in the framework of the Quantum Point Contact model, and the potential barrier is modulated during cells’ evolution. To demonstrate the validity and universality of our simulator, various operation schemes are simulated, with the simulated I − V characteristics well explaining experimental observations. Furthermore, the statistical analyses of simulation results in terms of Weibull distribution and conductance evolution also nicely track previous experimental results. Representing a simulation scale that links atomic-scale simulations to compact modeling, our simulator has the advantage of being much faster comparing with other atomic-scale models. Meanwhile, our simulator shows good universality since it can be applied to various operation signals, and also to different electrodes and dielectric layers dominated by different switching mechanisms

    The Protective Effect of Lycium Ruthenicum Murr Anthocyanins in Cr (VI)-Induced Mitophagy in DF-1 Cells

    No full text
    Cr (VI) is an extremely toxic environment and professional pollutant that seriously damages mitochondrial dysfunction when it enters a cell. Anthocyanins possess anti-oxidant, antiaging, and antifatigue properties. The regulatory effect of Lycium ruthenicum Murr anthocyanin (LRMA) on Cr (VI)-induced mitophagy in DF-1 cells was determined. The experimental design was divided into blank group, groups subjected to Cr (VI) and Cr (VI), and LRMA co-treatment groups. Cell viability was determined by the CCK-8 assay. Mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) were assessed by flow cytometry and immunofluorescence. Mitophagy was monitored by ELISA and Western blot. Data showed that Cr (VI) caused the overexpression of autophagy-related proteins (LC3, Beclin-1) and reduced the expressions of autophagy protein p62 and TOMM20. Compared with the Cr (VI) group, the LRMA group showed considerably decreased mitochondrial damage and mitophagy. LRMA decreased the mitochondrial protein expression of PINK1 and Parkin’s transfer from the cytoplasm to mitochondria. LRMA may confer protective effects by reducing PINK1/Parkin-mediated mitophagy in Cr (VI)-induced DF-1 cell models
    corecore