9 research outputs found

    Comparative Proteomics and Biological Effects of Functionalized Carbon Nanotubes in Intestinal Cell Co-culture

    Get PDF
    poster abstract“Carbon nanotubes (CNTs) possess unique electrical, mechanical, and thermal properties, with potential applications in the electronics, catalysts, polymer composites, aerospace, and other industries. CNTs are also being developed for a broad range of applications in biomedicine, including oral drug delivery. Functionalized, water dispersible CNTs (fCNTS) can be expected to enter the digestive tract and exert biological effects on its barrier epithelial cells. To characterize these effects, we developed an in vitro model of the large intestinal tract using a coculture of Caco-2 (75%) and HT29-MTX (25%, mucus secreting) cells, and exposed these cells to functionalized single-walled (SWNT) and multi-walled (MWNT) carbon nanotubes at realistic concentrations (500 pg/mL and 10 µg/mL; 48 h). Protein expression was analyzed using our recently developed label-free quantitative mass spectrometry (LFQMS) platform, IdentiQuantXL™, while typical toxicological endpoint assays were used to characterize various cellular responses. LFQMS identified 5,007 unique protein database entries, from which 4,200 proteins were considered qualified for quantitation. These proteins represented 1,978 protein groups (containing isoforms, splice-variants, etc). Differences in expression were calculated by ANOVA (P<0.001) and post hoc Holm Sidak comparisons (P<0.05). fCNT significantly altered protein expression in a moderate number of proteins, the extent and type of which were fCNT specific. Only 13 proteins were universally altered by all exposures (except 500 pg/mL COOHSWNT which had no effect), and these represent a broad range of cellular functions. Bioinformatic analysis using the Gene Ontology Database and Ingenuity Pathway Analysis revealed statistically significant protein associations with a broad range of functional networks and signaling/metabolic pathways. Again, little overlap between fCNT was observed. None of the exposures was associated with overt toxicity or proinflammatory response. The results suggest that significant biological effects result from fCNT exposure, responses that are specific to CNT-type and dose, but occurring in the absence of toxicity or irritation. Supported by NIEHS RC2ES018810.

    Purification and Characterization of Glutathione Binding Protein GsiB from Escherichia coli

    No full text
    Objectives. To purify and characterize the glutathione binding protein GsiB of glutathione importer (GSI) in Escherichia coli (E. coli). Results. The coding sequence of GsiB was cloned from E. coli MG1655 and expressed in BL21(DE3). GsiB protein was expressed and purified to homogeneity using Ni-affinity and gel filtration chromatography. SDS-PAGE of purified GsiB showed a single protein band of molecular mass 56 kDa, while native gel showed two bands around 56 kDa and 110 kDa. Gene knockout showed that GsiB was essential for GSI mediated glutathione import. Interactions of GsiA, B, C, and D were determined using bacterial two-hybrid method. Without glutathione, GsiB showed no direct interaction with the other three proteins. However, GsiB could interact with GsiC and GsiD when using glutathione as sole sulfur source. Conclusions. GsiB functions in E. coli was characterized which could help elucidate the glutathione import mechanism in gram-negative bacteria

    Discovery and Computational Analyses of Novel Small Molecule Zika Virus Inhibitors

    Get PDF
    Zika virus (ZIKV), one of the flaviviruses, has attracted worldwide attention since its large epidemics around Brazil. Association of ZIKV infection with microcephaly and neurological problems such as Guillain&#8211;Barr&#233; syndrome has prompted intensive pathological investigations. However, there is still a long way to go on the discovery of effective anti-ZIKV therapeutics. In this study, an in silico screening of the National Cancer Institute (NCI) diversity set based on ZIKV NS3 helicase was performed using a molecular docking approach. Selected compounds with drug-like properties were subjected to cell-based antiviral assays resulting in the identification of two novel lead compounds (named Compounds 1 and 2). They inhibited ZIKV infection with IC50 values at the micro-molar level (8.5 &#956;M and 15.2 &#956;M, respectively). Binding mode analysis, absolute binding free energy calculation, and structure&#8211;activity relationship studies of these two compounds revealed their possible interactions with ZIKV NS3 helicase, suggesting a mechanistic basis for further optimization. These two novel small molecules may represent new leads for the development of inhibitory drugs against ZIKV

    Plasma exchange therapy for acute necrotizing encephalopathy of childhood

    No full text
    ABSTRACT Importance Acute necrotizing encephalopathy (ANE) is a rare disease with high mortality. Plasma exchange (PLEX) has recently been reported to treat ANE of childhood (ANEC), but its efficacy is uncertain. Objective This study aimed to investigate the effectiveness of PLEX on ANEC. Methods A retrospective study was conducted in four pediatric intensive care units from December 2014 to December 2020. All patients who were diagnosed with ANEC were included; however, these patients were excluded if their length of stay was less than 24 h. Participants were classified into PLEX and non‐PLEX groups. Results Twenty‐nine patients with ANEC were identified, 10 in the PLEX group and 19 in the non‐PLEX group. In the PLEX group, C‐reactive protein, procalcitonin, alanine aminotransferase, and aspartate aminotransaminase levels were significantly lower after 3 days of treatment than before treatment (13.1 vs. 8.0, P = 0.043; 9.8 vs. 1.5, P = 0.028; 133.4 vs. 31.9, P = 0.028; 282.4 vs. 50.5, P = 0.046, respectively). Nine patients (31.0%, 9/29) died at discharge, and a significantly difference was found between the PLEX group and non‐PLEX group [0 vs. 47.4% (9/19), P = 0.011]. The median follow‐up period was 27 months, and three patients were lost to follow‐up. Thirteen patients (50.0%, 13/26) died at the last follow‐up, comprising three (33.3%, 3/9) in the PLEX group and ten (58.8%, 10/17) in the non‐PLEX group, but there was no significant difference between the two groups (P = 0.411). Three patients (10.3%, 3/29) fully recovered. Interpretation PLEX may reduce serum C‐reactive protein and procalcitonin levels and improve liver function in the short term. PLEX may improve the prognosis of ANEC, and further studies are needed
    corecore