4 research outputs found

    Osteoarthritis treatment with a novel nutraceutical acetylated ligstroside aglycone, a chemically modified extra-virgin olive oil polyphenol

    Get PDF
    Recent studies have shown that dietary patterns confer protection from certain chronic diseases related to oxidative stress, the immune system and chronic low-grade inflammatory diseases. The aim of this study was to evaluate the anti-inflammatory potential and the capacity to attenuate cartilage degradation using extra-virgin olive oil–derived polyphenols for the treatment of osteoarthritis. Results show that both nutraceuticals ligstroside aglycone and acetylated ligstroside aglycone showed an anti-inflammatory profile. Acetylated ligstroside aglycone significantly reduced the expression of pro-inflammatory genes including NOS2 and MMP13 at both RNA and protein levels; decreased nitric oxide release; and, importantly, reduced proteoglycan loss in human osteoarthritis cartilage explants. Our study demonstrated that a new synthetic acetylated ligstroside aglycone derivative offers enhanced anti-inflammatory profile than the natural nutraceutical compound in osteoarthritis. These results substantiate the role of nutraceuticals in osteoarthritis with implications for therapeutic intervention and our understanding of osteoarthritis pathophysiology.España, MINECO (CTQ2016-78703-P)España, Junta de Andalucía (FQM134

    Blueberries improve biomarkers of cardiometabolic function in participants with metabolic syndrome-results from a 6-month, double-blind, randomized controlled trial.

    Get PDF
    BACKGROUND: Anthocyanin-rich blueberry intake is associated with reduced type 2 diabetes and cardiovascular disease (CVD) risk in prospective studies, although long-term randomized controlled trials (RCTs) have not been conducted in at-risk populations. OBJECTIVE: In the longest-duration RCT to date, we examined the effect of 6-mo blueberry intake on insulin resistance and cardiometabolic function in metabolic syndrome. METHODS: A double-blind, parallel RCT (n = 115; age 63 ± 7 y; 68% male; body mass index 31.2 ± 3.0 kg/m2) was conducted, which fed 2 dietarily achievable blueberry intakes [equivalent to 1/2 and 1 cup/d (75/150 g)] compared with matched placebo. Insulin resistance was assessed via the homeostasis model assessment of insulin resistance (primary endpoint) and confirmed by [6-6-2H2]-glucose-labeled, 2-step hyperinsulinemic clamp (n = 20). Clinically relevant cardiometabolic endpoints [including flow-mediated dilatation, augmentation index, lipoprotein status (by nuclear magnetic resonance spectroscopy), and nitric oxide (NO)-related metabolite assay] and anthocyanin metabolism were assessed. RESULTS: A daily intake of 1 cup of blueberries improved endothelial function (flow-mediated dilatation: +1.45%; 95% CI: 0.83%, 2.1%; P = 0.003), systemic arterial stiffness (augmentation index: -2.24%; 95% CI: -3.97%, -0.61%; P = 0.04) and attenuated cyclic guanosine monophosphate concentrations. In statin nonusers (n = 71), elevated high-density lipoprotein cholesterol (+0.08 mmol/L; P = 0.03), high-density lipoprotein particle density (+0.48n, ×10-6; P = 0.002) and apolipoprotein A-I (+0.05 g/L; P = 0.01) concentrations were observed following the 1-cup/d intervention. Treatment compliance was 94.1% (wrapper returns) and total concentrations of anthocyanin-derived phenolic acid metabolites significantly increased, dose-dependently, in serum and 24-h urine (P < 0.01 and P < 0.001, respectively). Insulin resistance, pulse wave velocity, blood pressure, NO, and overall plasma thiol status were unaffected. Likewise, a half cup per day had no effect on any biomarkers. CONCLUSIONS: Despite insulin resistance remaining unchanged we show, to our knowledge, the first sustained improvements in vascular function, lipid status, and underlying NO bioactivity following 1 cup blueberries/d. With effect sizes predictive of 12-15% reductions in CVD risk, blueberries should be included in dietary strategies to reduce individual and population CVD risk. This study was registered at clinicaltrials.gov as NCT02035592.The US Highbush Blueberry Council (USHBC) with oversight from the USDA Biotechnology and Biological Sciences Research Council (BBSRC, UK). NIHR Cambridge Biomedical Research Centr

    Early oxidative stress response in patients with severe aortic stenosis undergoing transcatheter and surgical aortic valve replacement - a transatlantic study

    No full text
    Myocardial ischemia/reperfusion related oxidative stress as a result of cardiopulmonary bypass is thought to contribute to the adverse clinical outcomes following surgical aortic valve replacement (SAVR). Although the acute response following this procedure has been well characterized, much less is known about the nature and extent of oxidative stress induced by the transcatheter aortic valve replacement (TAVR) procedure. We therefore sought to examine and directly compare the oxidative stress response in patients undergoing TAVR and SAVR. A total of 60 patients were prospectively enrolled in this exploratory study, 38 patients undergoing TAVR and 22 patients SAVR. Reduced and oxidized glutathione (GSH, GSSG) in red blood cells as well as the ferric reducing ability of plasma (FRAP) and plasma concentrations of 8-isoprostanes were measured at baseline (S1), during early reperfusion (S2), and 6-8 hours (S3) following aortic valve replacement (AVR). TAVR and SAVR were successful in all patients. Patients undergoing TAVR were older (79.3±9.5 vs. 74.2±4.1 years; p&lt;0.01) and had a higher mean STS risk score (6.6±4.8 vs. 3.2±3.0; p&lt;0.001) than patients undergoing SAVR. At baseline, FRAP and 8- isoprostane plasma concentrations were similar between the two groups, but erythrocytic GSH concentrations were significantly lower in the TAVR group. After AVR, FRAP was markedly higher in the TAVR group, whereas 8-isoprostane concentrations were significantly elevated in the SAVR group. In conclusion, TAVR appears not to cause acute oxidative stress and may even improve the antioxidant capacity in the extracellular compartment
    corecore