66 research outputs found

    DESI Survey Validation Spectra Reveal an Increasing Fraction of Recently Quenched Galaxies at z∼1z\sim1

    Get PDF
    We utilize ∼17000\sim17000 bright Luminous Red Galaxies (LRGs) from the novel Dark Energy Spectroscopic Instrument Survey Validation spectroscopic sample, leveraging its deep (∼2.5\sim2.5 hour/galaxy exposure time) spectra to characterize the contribution of recently quenched galaxies to the massive galaxy population at 0.4<z<1.30.4<z<1.3. We use Prospector to infer non-parametric star formation histories and identify a significant population of post-starburst galaxies that have joined the quiescent population within the past ∼1\sim1 Gyr. The highest redshift subset (277 at z>1z>1) of our sample of recently quenched galaxies represents the largest spectroscopic sample of post-starburst galaxies at that epoch. At 0.4<z<0.80.4<z<0.8, we measure the number density of quiescent LRGs, finding that recently quenched galaxies constitute a growing fraction of the massive galaxy population with increasing lookback time. Finally, we quantify the importance of this population amongst massive (log(M⋆/M⊙)>11.2\mathrm{log}(M_\star/M_\odot)>11.2) LRGs by measuring the fraction of stellar mass each galaxy formed in the Gyr before observation, f1Gyrf_{\mathrm{1 Gyr}}. Although galaxies with f1Gyr>0.1f_{\mathrm{1 Gyr}}>0.1 are rare at z∼0.4z\sim0.4 (≲0.5%\lesssim 0.5\% of the population), by z∼0.8z\sim0.8 they constitute ∼3%\sim3\% of massive galaxies. Relaxing this threshold, we find that galaxies with f1Gyr>5%f_\mathrm{1 Gyr}>5\% constitute ∼10%\sim10\% of the massive galaxy population at z∼0.8z\sim0.8. We also identify a small but significant sample of galaxies at z=1.1−1.3z=1.1-1.3 that formed with f1Gyr>50%f_{\mathrm{1 Gyr}}>50\%, implying that they may be analogues to high-redshift quiescent galaxies that formed on similar timescales. Future analysis of this unprecedented sample promises to illuminate the physical mechanisms that drive the quenching of massive galaxies after cosmic noon.Comment: Submitted to ApJ Letters after DESI Collaboration Review. 14 pages, 5 figures, comments welcome

    The DESI One-Percent Survey: Evidence for Assembly Bias from Low-Redshift Counts-in-Cylinders Measurements

    Full text link
    We explore the galaxy-halo connection information that is available in low-redshift samples from the early data release of the Dark Energy Spectroscopic Instrument (DESI). We model the halo occupation distribution (HOD) from z=0.1-0.3 using Survey Validation 3 (SV3; a.k.a., the One-Percent Survey) data of the DESI Bright Galaxy Survey (BGS). In addition to more commonly used metrics, we incorporate counts-in-cylinders (CiC) measurements, which drastically tighten HOD constraints. Our analysis is aided by the Python package, galtab, which enables the rapid, precise prediction of CiC for any HOD model available in halotools. This methodology allows our Markov chains to converge with much fewer trial points, and enables even more drastic speedups due to its GPU portability. Our HOD fits constrain characteristic halo masses tightly and provide statistical evidence for assembly bias, especially at lower luminosity thresholds: the HOD of central galaxies in z∼0.15z\sim0.15 samples with limiting absolute magnitude Mr<−20.0M_r < -20.0 and Mr<−20.5M_r < -20.5 samples is positively correlated with halo concentration with a significance of 99.9% and 99.5%, respectively. Our models also favor positive central assembly bias for the brighter Mr<−21.0M_r < -21.0 sample at z∼0.25z\sim0.25 (94.8% significance), but there is no significant evidence for assembly bias with the same luminosity threshold at z∼0.15z\sim0.15. We provide our constraints for each threshold sample's characteristic halo masses, assembly bias, and other HOD parameters. These constraints are expected to be significantly tightened with future DESI data, which will span an area 100 times larger than that of SV3

    PROVABGS: The Probabilistic Stellar Mass Function of the BGS One-Percent Survey

    Full text link
    We present the probabilistic stellar mass function (pSMF) of galaxies in the DESI Bright Galaxy Survey (BGS), observed during the One-Percent Survey. The One-Percent Survey was one of DESI's survey validation programs conducted from April to May 2021, before the start of the main survey. It used the same target selection and similar observing strategy as the main survey and successfully observed the spectra and redshifts of 143,017 galaxies in the r<19.5r < 19.5 magnitude-limited BGS Bright sample and 95,499 galaxies in the fainter surface brightness and color selected BGS Faint sample over z<0.6z < 0.6. We derive pSMFs from posteriors of stellar mass, M∗M_*, inferred from DESI photometry and spectroscopy using the Hahn et al. (2022a; arXiv:2202.01809) PRObabilistic Value-Added BGS (PROVABGS) Bayesian SED modeling framework. We use a hierarchical population inference framework that statistically and rigorously propagates the M∗M_* uncertainties. Furthermore, we include correction weights that account for the selection effects and incompleteness of the BGS observations. We present the redshift evolution of the pSMF in BGS as well as the pSMFs of star-forming and quiescent galaxies classified using average specific star formation rates from PROVABGS. Overall, the pSMFs show good agreement with previous stellar mass function measurements in the literature. Our pSMFs showcase the potential and statistical power of BGS, which in its main survey will observe >100×\times more galaxies. Moreover, we present the statistical framework for subsequent population statistics measurements using BGS, which will characterize the global galaxy population and scaling relations at low redshifts with unprecedented precision.Comment: 25 pages, 12 figures; data used to generate figures is available at https://doi.org/10.5281/zenodo.8018936; submitted to Ap

    Changing-look Active Galactic Nuclei from the Dark Energy Spectroscopic Instrument. I. Sample from the Early Data

    Get PDF
    Changing-look active galactic nuclei (CL AGNs) can be generally confirmed by the emergence (turn-on) or disappearance (turn-off) of broad emission lines (BELs), associated with a transient timescale (about 100 ∼ 5000 days) that is much shorter than predicted by traditional accretion disk models. We carry out a systematic CL AGN search by crossmatching the spectra coming from the Dark Energy Spectroscopic Instrument and the Sloan Digital Sky Survey. Following previous studies, we identify CL AGNs based on Hα, Hβ, and Mg ii at z ≤ 0.75 and Mg ii, C iii], and C iv at z > 0.75. We present 56 CL AGNs based on visual inspection and three selection criteria, including 2 Hα, 34 Hβ, 9 Mg ii, 18 C iii], and 1 C iv CL AGN. Eight cases show simultaneous appearances/disappearances of two BELs. We also present 44 CL AGN candidates with significant flux variation of BELs, but remaining strong broad components. In the confirmed CL AGNs, 10 cases show additional CL candidate features for different lines. In this paper, we find: (1) a 24:32 ratio of turn-on to turn-off CL AGNs; (2) an upper-limit transition timescale ranging from 330 to 5762 days in the rest frame; and (3) the majority of CL AGNs follow the bluer-when-brighter trend. Our results greatly increase the current CL census (∼30%) and would be conducive to exploring the underlying physical mechanism

    PROVABGS: The Probabilistic Stellar Mass Function of the BGS One-percent Survey

    Get PDF
    We present the probabilistic stellar mass function (pSMF) of galaxies in the DESI Bright Galaxy Survey (BGS), observed during the One-percent Survey. The One-percent Survey was one of DESI’s survey validation programs conducted from 2021 April to May, before the start of the main survey. It used the same target selection and similar observing strategy as the main survey and successfully observed the spectra and redshifts of 143,017 galaxies in the r 100 × more galaxies. Moreover, we present the statistical framework for subsequent population statistics measurements using BGS, which will characterize the global galaxy population and scaling relations at low redshifts with unprecedented precision

    Local primordial non-Gaussianity from the large-scale clustering of photometric DESI luminous red galaxies

    Full text link
    We use angular clustering of luminous red galaxies from the Dark Energy Spectroscopic Instrument (DESI) imaging surveys to constrain the local primordial non-Gaussianity parameter fNL. Our sample comprises over 12 million targets, covering 14,000 square degrees of the sky, with redshifts in the range 0.2< z < 1.35. We identify Galactic extinction, survey depth, and astronomical seeing as the primary sources of systematic error, and employ linear regression and artificial neural networks to alleviate non-cosmological excess clustering on large scales. Our methods are tested against log-normal simulations with and without fNL and systematics, showing superior performance of the neural network treatment in reducing remaining systematics. Assuming the universality relation, we find fNL =47−11(−22)+14(+29)= 47^{+14(+29)}_{-11(-22)} at 68\%(95\%) confidence. With a more aggressive treatment, including regression against the full set of imaging maps, our maximum likelihood value shifts slightly to fNL∼50 \sim 50 and the uncertainty on fNL increases due to the removal of large-scale clustering information. We apply a series of robustness tests (e.g., cuts on imaging, declination, or scales used) that show consistency in the obtained constraints. Despite extensive efforts to mitigate systematics, our measurements indicate fNL > 0 with a 99.9 percent confidence level. This outcome raises concerns as it could be attributed to unforeseen systematics, including calibration errors or uncertainties associated with low-\ell systematics in the extinction template. Alternatively, it could suggest a scale-dependent fNL model--causing significant non-Gaussianity around large-scale structure while leaving cosmic microwave background scales unaffected. Our results encourage further studies of fNL with DESI spectroscopic samples, where the inclusion of 3D clustering modes should help separate imaging systematics.Comment: 19 pages, 15 figures, 6 tables (Appendix excluded). Submitted to MNRA

    GTC Follow-up Observations of Very Metal-Poor Star Candidates from DESI

    Full text link
    The observations from the Dark Energy Spectroscopic Instrument (DESI) will significantly increase the numbers of known extremely metal-poor stars by a factor of ~ 10, improving the sample statistics to study the early chemical evolution of the Milky Way and the nature of the first stars. In this paper we report high signal-to-noise follow-up observations of 9 metal-poor stars identified during the DESI commissioning with the Optical System for Imaging and low-Intermediate-Resolution Integrated Spectroscopy (OSIRIS) instrument on the 10.4m Gran Telescopio Canarias (GTC). The analysis of the data using a well-vetted methodology confirms the quality of the DESI spectra and the performance of the pipelines developed for the data reduction and analysis of DESI data.Comment: 13 pages, 4 figures, to be submitted to ApJ, data available from https://doi.org/10.5281/zenodo.802084
    • …
    corecore