333 research outputs found

    The SCN8A encephalopathy mutation p.Ile1327Val displays elevated sensitivity to the anticonvulsant phenytoin

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134291/1/epi13461_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134291/2/epi13461.pd

    Modulation of synaptic function by VAC14, a protein that regulates the phosphoinositides PI(3,5)P 2 and PI(5)P

    Get PDF
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/102191/1/embj2012200.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/102191/2/embj2012200-sup-0001.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/102191/3/embj2012200-reviewer_comments.pd

    A null mutation of the neuronal sodium channel NaV1.6 disrupts action potential propagation and excitation‐contraction coupling in the mouse heart

    Full text link
    Evidence supports the expression of brain‐type sodium channels in the heart. Their functional role, however, remains controversial. We used global NaV1.6‐null mice to test the hypothesis that NaV1.6 contributes to the maintenance of propagation in the myocardium and to excitation‐contraction (EC) coupling. We demonstrated expression of transcripts encoding full‐length NaV1.6 in isolated ventricular myocytes and confirmed the striated pattern of NaV1.6 fluorescence in myocytes. On the ECG, the PR and QRS intervals were prolonged in the null mice, and the Ca2+ transients were longer in the null cells. Under patch clamping, at holding potential (HP) = –120 mV, the peak INa was similar in both phenotypes. However, at HP = –70 mV, the peak INa was smaller in the nulls. In optical mapping, at 4 mM [K+]o, 17 null hearts showed slight (7%) reduction of ventricular conduction velocity (CV) compared to 16 wild‐type hearts. At 12 mM [K+]o, CV was 25% slower in a subset of 9 null vs. 9 wild‐type hearts. These results highlight the importance of neuronal sodium channels in the heart, whereby NaV1.6 participates in EC coupling, and represents an intrinsic depolarizing reserve that contributes to excitation.—Noujaim, S. F., Kaur, K., Milstein, M., Jones, J. M., Furspan, P., Jiang, D., Auerbach, D. S., Herron, T., Meisler, M. H., Jalife, J. A null mutation of the neuronal sodium channel NaV1.6 disrupts action potential propagation and excitation‐contraction coupling in the mouse heart. FASEB J. 26, 63–72 (2012). www.fasebj.orgPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154524/1/fsb2fj10179770.pd

    Characterization of a de novo SCN8A mutation in a patient with epileptic encephalopathy

    Get PDF
    Objective Recently, de novo SCN8A missense mutations have been identified as a rare dominant cause of epileptic encephalopathies. Functional studies on the first described case demonstrated gain-of-function effects of the mutation. We describe a novel de novo mutation of SCN8A in a patient with epileptic encephalopathy, and functional characterization of the mutant protein. Design Whole exome sequencing was used to discover the variant. We generated a mutant cDNA, transfected HEK293 cells, and performed Western blotting to assess protein stability. To study channel functional properties, patch-clamp experiments were carried out in transfected neuronal ND7/23 cells. Results The proband exhibited seizure onset at 6 months of age, diffuse brain atrophy, and more profound developmental impairment than the original case. The mutation p.Arg233Gly in the voltage sensing transmembrane segment D1S4 was present in the proband and absent in both parents. This mutation results in a temperature-sensitive reduction in protein expression as well as reduced sodium current amplitude and density and a relative increased response to a slow ramp stimulus, though this did not result in an absolute increased current at physiological temperatures. Conclusion The new de novo SCN8A mutation is clearly deleterious, resulting in an unstable protein with reduced channel activity. This differs from the gain-of-function attributes of the first SCN8A mutation in epileptic encephalopathy, pointing to heterogeneity of mechanisms. Since Nav1.6 is expressed in both excitatory and inhibitory neurons, a differential effect of a loss-of-function of Nav1.6 Arg223Gly on inhibitory interneurons may underlie the epilepsy phenotype in this patient

    The C-terminal tail of presenilin regulates Omi/HtrA2 protease activity

    Get PDF
    Presenilin mutations are responsible for most cases of autosomal dominant inherited forms of early onset Alzheimer disease. Presenilins play an important role in amyloid beta-precursor processing, NOTCH receptor signaling, and apoptosis. However, the molecular mechanisms by which presenilins regulate apoptosis are not fully understood. Here, we report that presenilin-1 (PS1) regulates the proteolytic activity of the serine protease Omi/HtrA2 through direct interaction with its regulatory PDZ domain. We show that a peptide corresponding to the cytoplasmic C-terminal tail of PS1 dramatically increases the proteolytic activity of Omi/HtrA2 toward the inhibitor of apoptosis proteins and beta-casein and induces cell death in an Omi/HtrA2-dependent manner. Consistent with these results, ectopic expression of full-length PS1, but not PS1 lacking the C-terminal PDZ binding motif, potentiated Omi/HtrA2-induced cell death. Our results suggest that the C terminus of PS1 is an activation peptide ligand for the PDZ domain of Omi/HtrA2 and may regulate the protease activity of Omi/HtrA2 after its release from the mitochondria during apoptosis. This mechanism of Omi/HtrA2 activation is similar to the mechanism of activation of the related bacterial DegS protease by the outer-membrane porins

    Loss of Omi mitochondrial protease activity causes the neuromuscular disorder of mnd2 mutant mice

    Full text link
    The mouse mutant mnd2 (motor neuron degeneration 2) exhibits muscle wasting, neurodegeneration, involution of the spleen and thymus, and death by 40 days of age(1,2). Degeneration of striatal neurons, with astrogliosis and microglia activation, begins at around 3 weeks of age, and other neurons are affected at later stages'. Here we have identified the mnd2 mutation as the missense mutation Ser276Cys in the protease domain of the nuclear-encoded mitochondrial serine protease Omi (also known as HtrA2 or Prss25). Protease activity of Omi is greatly reduced in tissues of mnd2 mice but is restored in mice rescued by a bacterial artificial chromosome transgene containing the wildtype Omi gene. Deletion of the PDZ domain partially restores protease activity to the inactive recombinant Omi protein carrying the Ser276Cys mutation, suggesting that the mutation impairs substrate access or binding to the active site pocket. Loss of Omi protease activity increases the susceptibility of mitochondria to induction of the permeability transition, and increases the sensitivity of mouse embryonic fibroblasts to stress-induced cell death. The neurodegeneration and juvenile lethality in mnd2 mice result from this defect in mitochondrial Omi protease.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62561/1/nature02052.pd

    A novel epilepsy mutation in the sodium channel SCN1A identifies a cytoplasmic domain for {beta} subunit interaction

    Get PDF
    A mutation in the sodium channel SCN1A was identified in a small Italian family with dominantly inherited generalized epilepsy with febrile seizures plus (GEFS+). The mutation, D1866Y, alters an evolutionarily conserved aspartate residue in the C-terminal cytoplasmic domain of the sodium channel {alpha} subunit. The mutation decreased modulation of the {alpha} subunit by {beta}1, which normally causes a negative shift in the voltage dependence of inactivation in oocytes. There was less of a shift with the mutant channel, resulting in a 10 mV difference between the wild-type and mutant channels in the presence of {beta}1. This shift increased the magnitude of the window current, which resulted in more persistent current during a voltage ramp. Computational analysis suggests that neurons expressing the mutant channels will fire an action potential with a shorter onset delay in response to a threshold current injection, and that they will fire multiple action potentials with a shorter interspike interval at a higher input stimulus. These results suggest a causal relationship between a positive shift in the voltage dependence of sodium channel inactivation and spontaneous seizure activity. Direct interaction between the cytoplasmic C-terminal domain of the wild-type{alpha} subunit with the {beta}1or {beta}3 subunit was first demonstrated by yeast two-hybrid analysis. The SCN1A peptide K1846-R1886 is sufficient for {beta} subunit interaction. Coimmunoprecipitation from transfected mammalian cells confirmed the interaction between the C-terminal domains of the {alpha} and {beta}1 subunits. The D1866Y mutation weakens this interaction, demonstrating a novel molecular mechanism leading to seizure susceptibility

    Varicella-Zoster viruses associated with post-herpetic neuralgia induce sodium current density increases in the ND7-23 Nav-1.8 neuroblastoma cell line

    Get PDF
    Post-herpetic neuralgia (PHN) is the most significant complication of herpes zoster caused by reactivation of latent Varicella-Zoster virus (VZV). We undertook a heterologous infection in vitro study to determine whether PHN-associated VZV isolates induce changes in sodium ion channel currents known to be associated with neuropathic pain. Twenty VZV isolates were studied blind from 11 PHN and 9 non-PHN subjects. Viruses were propagated in the MeWo cell line from which cell-free virus was harvested and applied to the ND7/23-Nav1.8 rat DRG x mouse neuroblastoma hybrid cell line which showed constitutive expression of the exogenous Nav 1.8, and endogenous expression of Nav 1.6 and Nav 1.7 genes all encoding sodium ion channels the dysregulation of which is associated with a range of neuropathic pain syndromes. After 72 hrs all three classes of VZV gene transcripts were detected in the absence of infectious virus. Single cell sodium ion channel recording was performed after 72 hr by voltage-clamping. PHN-associated VZV significantly increased sodium current amplitude in the cell line when compared with non-PHN VZV, wild-type (Dumas) or vaccine VZV strains ((POka, Merck and GSK). These sodium current increases were unaffected by acyclovir pre-treatment but were abolished by exposure to Tetrodotoxin (TTX) which blocks the TTX-sensitive fast Nav 1.6 and Nav 1.7 channels but not the TTX-resistant slow Nav 1.8 channel. PHN-associated VZV sodium current increases were therefore mediated in part by the Nav 1.6 and Nav 1.7 sodium ion channels. An additional observation was a modest increase in message levels of both Nav1.6 and Nav1.7 mRNA but not Nav 1.8 in PHN virally infected cells
    • 

    corecore