129 research outputs found
Attaining the shot-noise-limit in the ACME measurement of the electron electric dipole moment
Experimental searches for the electron electric dipole moment, , probe
new physics beyond the Standard Model. Recently, the ACME Collaboration set a
new limit of [Nature
, 355 (2018)], constraining time reversal symmetry (T) violating
physics in the 3-100 TeV energy scale. ACME extracts from the measurement
of electron spin precession due to the thorium monoxide (ThO) molecule's
internal electric field. This recent ACME II measurement achieved an order of
magnitude increased sensitivity over ACME I by reducing both statistical and
systematic uncertainties in the measurement of the electric dipole precession
frequency. The ACME II statistical uncertainty was a factor of 1.7 above the
ideal shot-noise limit. We have since traced this excess noise to timing
imperfections. When the experimental imperfections are eliminated, we show that
shot noise limit is attained by acquiring noise-free data in the same
configuration as ACME II.Comment: 7 pages, 4 figure
SiPM module for the ACME III electron EDM search
This report shows the design and the performance of a large area Silicon
Photomultiplier (SiPM) module developed detection of fluorescent light emitted
from a 10 cm scale volume. The module was optimized for the planned ACME III
electron electric dipole moment (eEDM) search, which will be a powerful probe
for the existence of physics beyond the Standard Model of particle physics. The
ACME experiment searched for the eEDM with the world's highest sensitivity
using cold ThO polar molecules (ACME II). In ACME III, SiPMs will be used for
detection of fluorescent photons (the fundamental signal of the experiment)
instead of PMTs, which were used in the previous measurement. We have developed
an optimized SiPM module, based on a 16-channel SiPM array. Key operational
parameters are characterized, including gain and noise. The SiPM dark count
rate, background light sensitivity, and optical crosstalk are found to all be
well suppressed and more than sufficient for the ACME III application.Comment: 10 pages, 6 figures, proceedings for NDIP2
Entre o medo da contaminação pelo HIV e as representações simbólicas da AIDS: o espectro do desespero contemporâneo
Este estudo pretende colaborar para uma melhor compreensão dos sentimentos provocados no ser humano vivendo em plena era da AIDS. A falta de informação e, por consequência, o desconhecimento sobre a AIDS, sua dinâmica de transmissão e as medidas preventivas adequadas, transformam a convivência com esta sÃndrome num fator estressante para muitas pessoas, gerando sentimentos de medo e suscitando a correlação com diferentes representações simbólicas ligadas à contaminação pelo HIV. Vários autores formularam modelos teóricos para explicar esta correlação. Neste trabalho procura-se verificar os sentimentos emergentes e a respectiva vinculação aos significados simbólicos da doença sob o prisma destas teorias. Foram entrevistadas 31 pessoas, sendo 10 estudantes de diferentes cursos superiores da Universidade de São Paulo e 21 detentos do Sistema Penitenciário do Estado de São Paulo. Os resultados obtidos mostraram que, apesar dos grupos apresentarem caracterÃsticas diferentes entre si, ambos atribuiram à AIDS significados simbólicos ligados ao medo da contaminação pelo HIVLack of knowledge and mis informations on HIV/AIDS are predictors of emotional responses as fear of contagion, homophobia, avoidance and excessive precautions. Fear of contagion is an affective stress response to the neurocognitive activity that leads to a perceived threat of AIDS in connection with the symbolic meanings os illness. Focused interviews were conducted with an opportunistic sample of 31 young people to know the affective responses and behaviors after blood screening for HIV antibody testing. The findings confirm the relationship of symbolic representation of illness as mystery, death, punishment and sexuality to fear of contagion and mitic conception of AIDS
Nck2 promotes human melanoma cell proliferation, migration and invasion in vitro and primary melanoma-derived tumor growth in vivo
<p>Abstract</p> <p>Background</p> <p>Nck1 and Nck2 adaptor proteins are involved in signaling pathways mediating proliferation, cytoskeleton organization and integrated stress response. Overexpression of Nck1 in fibroblasts has been shown to be oncogenic. Through the years this concept has been challenged and the consensus is now that overexpression of either Nck cooperates with strong oncogenes to transform cells. Therefore, variations in Nck expression levels in transformed cells could endorse cancer progression.</p> <p>Methods</p> <p>Expression of Nck1 and Nck2 proteins in various cancer cell lines at different stages of progression were analyzed by western blots. We created human primary melanoma cell lines overexpressing GFP-Nck2 and investigated their ability to proliferate along with metastatic characteristics such as migration and invasion. By western blot analysis, we compared levels of proteins phosphorylated on tyrosine as well as cadherins and integrins in human melanoma cells overexpressing or not Nck2. Finally, in mice we assessed tumor growth rate of human melanoma cells expressing increasing levels of Nck2.</p> <p>Results</p> <p>We found that expression of Nck2 is consistently increased in various metastatic cancer cell lines compared with primary counterparts. Particularly, we observed significant higher levels of Nck2 protein and mRNA, as opposed to no change in Nck1, in human metastatic melanoma cell lines compared with non-metastatic melanoma and normal melanocytes. We demonstrated the involvement of Nck2 in proliferation, migration and invasion in human melanoma cells. Moreover, we discovered that Nck2 overexpression in human primary melanoma cells correlates with higher levels of proteins phosphorylated on tyrosine residues, assembly of Nck2-dependent pY-proteins-containing molecular complexes and downregulation of cadherins and integrins. Importantly, we uncovered that injection of Nck2-overexpressing human primary melanoma cells into mice increases melanoma-derived tumor growth rate.</p> <p>Conclusions</p> <p>Collectively, our data indicate that Nck2 effectively influences human melanoma phenotype progression. At the molecular level, we propose that Nck2 in human primary melanoma promotes the formation of molecular complexes regulating proliferation and actin cytoskeleton dynamics by modulating kinases or phosphatases activities that results in increased levels of proteins phosphorylated on tyrosine residues. This study provides new insights regarding cancer progression that could impact on the therapeutic strategies targeting cancer.</p
G-protein signaling: back to the future
Heterotrimeric G-proteins are intracellular partners of G-protein-coupled receptors (GPCRs). GPCRs act on inactive Gα·GDP/Gβγ heterotrimers to promote GDP release and GTP binding, resulting in liberation of Gα from Gβγ. Gα·GTP and Gβγ target effectors including adenylyl cyclases, phospholipases and ion channels. Signaling is terminated by intrinsic GTPase activity of Gα and heterotrimer reformation — a cycle accelerated by ‘regulators of G-protein signaling’ (RGS proteins). Recent studies have identified several unconventional G-protein signaling pathways that diverge from this standard model. Whereas phospholipase C (PLC) β is activated by Gαq and Gβγ, novel PLC isoforms are regulated by both heterotrimeric and Ras-superfamily G-proteins. An Arabidopsis protein has been discovered containing both GPCR and RGS domains within the same protein. Most surprisingly, a receptor-independent Gα nucleotide cycle that regulates cell division has been delineated in both Caenorhabditis elegans and Drosophila melanogaster. Here, we revisit classical heterotrimeric G-protein signaling and explore these new, non-canonical G-protein signaling pathways
- …