332 research outputs found

    X-ray Emission from the 3C 273 Jet

    Full text link
    We present results from four recent Chandra monitoring observations of the jet in 3C 273 using the ACIS detector, obtained between November 2003 and July 2004. We find that the X-ray emission comes in two components: unresolved knots that are smaller than the corresponding optically emitting knots and a broad channel that is about the same width as the optical interknot region. We compute the jet speed under the assumption that the X-ray emission is due to inverse Compton scattering of the cosmic microwave background, finding that the dimming of the jet X-ray emission to the jet termination relative to the radio emission may be due to bulk deceleration.Comment: 2 pages, 2 figures, to appear in the proceedings of "The X-ray Universe 2005", San Lorenzo de El Escorial (Spain), 26-30 September 200

    The core flux of the brightest 10 micron galaxies in the southern sky

    Get PDF
    Aims. Near diffraction-limited images have been taken at 8.9, 11.9, and 12.9 micron for the brightest extragalactic sources in the southern sky, in order to optimally plan N-band observations with MIDI (MID-infrared Interferometric instrument) at the VLTI. Methods. We have assembled a sample of 21 objects consisting of all the AGNs observable from Paranal observatory, Chile, plus three non-AGN objects, with an estimated N-band flux greater than 400mJy. We used the TIMMI2 Mid Infrared instrument mounted on the ESO's 3.6m telescope to obtain near diffraction-limited images in order to establish the unresolved core flux within < 0.5 arscsec. Results. Positions and core total fluxes were obtained for all sources in our sample and compared with similar investigations in the literature. We find that 15 AGN and the nuclear starburst in NGC 253 exhibit an unresolved core flux < 300mJy at 11.9 micron, making them promising targets for MIDI at the VLTI. For extended sources, near diffraction-limited images are presented and discussed.Comment: Accepted to A&

    The X-ray Emissions from the M87 Jet: Diagnostics and Physical Interpretation

    Full text link
    We reanalyze the deep Chandra observations of the M87 jet, first examined by Wilson & Yang (2002). By employing an analysis chain that includes image deconvolution, knots HST-1 and I are fully separated from adjacent emission. We find slight but significant variations in the spectral shape, with values of αx\alpha_x ranging from ∌1.2−1.6\sim 1.2-1.6. We use VLA radio observations, as well as HST imaging and polarimetry data, to examine the jet's broad-band spectrum and inquire as to the nature of particle acceleration in the jet. As shown in previous papers, a simple continuous injection model for synchrotron-emitting knots, in which both the filling factor, faccf_{acc}, of regions within which particles are accelerated and the energy spectrum of the injected particles are constant, cannot account for the X-ray flux or spectrum. Instead, we propose that faccf_{acc} is a function of position and energy and find that in the inner jet, facc∝Eγ−0.4±0.2∝Ee−0.2±0.1f_{acc} \propto E_\gamma^{-0.4 \pm 0.2} \propto E_e^{-0.2 \pm 0.1}, and in knots A and B, facc∝Eγ−0.7±0.2∝Ee−0.35±0.1f_{acc} \propto E_\gamma^{-0.7 \pm 0.2} \propto E_e^{-0.35 \pm 0.1}, where EÎłE_\gamma is the emitted photon energy and and EeE_e is the emitting electron energy. In this model, the index pp of the injected electron energy spectrum (n(Ee)∝Ee−pn(E_{e}) \propto E_{e}^{-p}) is p=2.2p=2.2 at all locations in the jet, as predicted by models of cosmic ray acceleration by ultrarelativistic shocks. There is a strong correlation between the peaks of X-ray emission and minima of optical percentage polarization, i.e., regions where the jet magnetic field is not ordered. We suggest that the X-ray peaks coincide with shock waves which accelerate the X-ray emitting electrons and cause changes in the direction of the magnetic field; the polarization is thus small because of beam averaging.Comment: Accepted for publication in ApJ; 21 pages, 9 figures, 2 tables; abstract shortened for astro-ph; Figures 1, 7 and 8 at reduced resolutio

    The Optical-Near-IR Spectrum of the M87 Jet From HST Observations

    Get PDF
    We present 1998 HST observations of M87 which yield the first single-epoch optical and radio-optical spectral index images of the jet at 0.15â€Čâ€Č0.15'' resolution. We find ≈0.67 \approx 0.67, comparable to previous measurements, and ≈0.9 \approx 0.9 (FΜ∝Μ−αF_\nu \propto \nu^{-\alpha}), slightly flatter than previous workers. Reasons for this discrepancy are discussed. These observations reveal a large variety of spectral slopes. Bright knots exhibit flatter spectra than interknot regions. The flattest spectra (αo∌0.5−0.6\alpha_o \sim 0.5-0.6; comparable to or flatter than αro\alpha_{ro}) are found in two inner jet knots (D-East and HST-1) which contain the fastest superluminal components. In knots A, B and C, αo\alpha_o and αro\alpha_{ro} are essentially anti-correlated. Near the flux maxima of knots HST-1 and F, changes in αro\alpha_{ro} lag changes in αo\alpha_o, but in knots D and E, the opposite relationship is observed. This is further evidence that radio and optical emissions in the M87 jet come from substantially different physical regions. The delays observed in the inner jet are consistent with localized particle acceleration, with tacc<<tcoolt_{acc} << t_{cool} for optically emitting electrons in knots HST-1 and F, and tacc∌tcoolt_{acc} \sim t_{cool} for optically emitting electrons in knots D and E. Synchrotron models yield \nu_B \gsim 10^{16} Hz for knots D, A and B, and somewhat lower values, ÎœB∌1015−1016\nu_B \sim 10^{15}- 10^{16} Hz, in other regions. If X-ray emissions from knots A, B and D are co-spatial with optical and radio emission, we can strongly rule out the ``continuous injection'' model. Because of the short lifetimes of X-ray synchrotron emitting particles, the X-ray emission likely fills volumes much smaller than the optical emission regions.Comment: Text 17 pages, 3 Tables, 11 figures, accepted by Ap

    The Electron Energy Distribution in the Hotspots of Cygnus A: Filling the Gap with the Spitzer Space Telescope

    Full text link
    Here we present Spitzer Space Telescope imaging of Cyg A with the Infrared Array Camera, resulting in the detection of the high-energy tails or cut-offs in the synchrotron spectra for all four hotspots of this archetype radio galaxy. When combined with the other data collected from the literature, our observations allow for detailed modeling of the broad-band emission for the brightest spots A and D. We confirm that the X-ray flux detected previously from these features is consistent with the synchrotron self-Compton radiation for the magnetic field intensity 170 muG in spot A, and 270 muG in spot D. We also find that the energy density of the emitting electrons is most likely larger by a factor of a few than the energy density of the hotspots' magnetic field. We construct energy spectra of the radiating ultrarelativistic electrons. We find that for both hotspots A and D these spectra are consistent with a broken power-law extending from at least 100 MeV up to 100 GeV, and that the spectral break corresponds almost exactly to the proton rest energy of 1 GeV. We argue that the shape of the electron continuum reflects two different regimes of the electron acceleration process at mildly relativistic shocks, rather than resulting from radiative cooling and/or absorption effects. In this picture the protons' inertia defines the critical energy for the hotspot electrons above which Fermi-type acceleration processes may play a major role, but below which the operating acceleration mechanism has to be of a different type. At energies >100 GeV, the electron spectra cut-off/steepen again, most likely as a result of spectral aging due to radiative loss effects. We discuss several implications of the presented analysis for the physics of extragalactic jets.Comment: 29 pages, 8 figures and 2 tables included. Accepted for publication in Ap

    Dust emission from a parsec-scale structure in the Seyfert 1 nucleus of NGC 4151

    Full text link
    We report mid-IR interferometric measurements with \sim 10 mas resolution, which resolve the warm (T = 285 +25 / -50 K) thermal emission at the center of NGC 4151. Using pairs of VLT 8.2 m telescopes with MIDI and by comparing the data to a Gaussian model, we determined the diameter of the dust emission region, albeit only along one position angle, to be 2.0 +/- 0.4 pc (FWHM). This is the first size and temperature estimate for the nuclear warm dust distribution in a Seyfert 1 galaxy. The parameters found are comparable to those in Seyfert 2 galaxies, thus providing direct support for the unified model. Using simple analytic temperature distributions, we find that the mid-infrared emission is probably not the smooth continuation of the hot nuclear source that is marginally resolved with K band interferometry. We also detected weak excess emission around 10.5 micron in our shorter baseline observation, possibly indicating that silicate emission is extended to the parsec scale.Comment: 5 pages, 4 figures, accepted for publication in The Astrophysical Journal Letter

    The origins of X-ray emission from the hotspots of FRII radio sources

    Get PDF
    We use new and archival Chandra data to investigate the X-ray emission from a large sample of compact hotspots of FRII radio galaxies and quasars from the 3C catalogue. We find that only the most luminous hotspots tend to be in good agreement with the predictions of a synchrotron self-Compton model with equipartition magnetic fields. At low hotspot luminosities inverse-Compton predictions are routinely exceeded by several orders of magnitude, but this is never seen in more luminous hotspots. We argue that an additional synchrotron component of the X-ray emission is present in low-luminosity hotspots, and that the hotspot luminosity controls the ability of a given hotspot to produce synchrotron X-rays, probably by determining the high-energy cutoff of the electron energy spectrum. It remains plausible that all hotspots are close to the equipartition condition.Comment: 49 pages, 16 figures. ApJ accepted. Revised version fixes a typo in one of the Tables and corrects a statement about 3C27

    Sub-Arcsecond Imaging of 3C123:108-GHz Continuum Observations of the Radio Hotspots

    Get PDF
    We present the results of sub-arcsecond 108 GHz continuum interferometric observations toward the radio luminous galaxy 3C123. Using multi-array observations, we utilize the high u,v dynamic range of the BIMA millimeter array to sample fully spatial scales ranging from 0.5" to 50". This allows us to make one-to-one comparisons of millimeter-wavelength emission in the radio lobes and hotspots to VLA centimeter observations at 1.4, 4.9, 8.4, and 15 GHz. At 108 GHz, the bright, eastern double hotspot in the southern lobe is resolved. This is only the second time that a multiple hotspot region has been resolved in the millimeter regime. We model the synchrotron spectra of the hotspots and radio lobes using simple broken power-law models with high energy cutoffs, and discuss the hotspot spectra and their implications for models of multiple hotspot formation.Comment: 16 pages, 3 Figures, ApJ Accepte

    Evolution of the Dark Matter Distribution with 3-D Weak Lensing

    Full text link
    We present a direct detection of the growth of large-scale structure, using weak gravitational lensing and photometric redshift data from the COMBO-17 survey. We use deep R-band imaging of two 0.25 square degree fields, affording shear estimates for over 52000 galaxies; we combine these with photometric redshift estimates from our 17 band survey, in order to obtain a 3-D shear field. We find theoretical models for evolving matter power spectra and correlation functions, and fit the corresponding shear correlation functions to the data as a function of redshift. We detect the evolution of the power at the 7.7 sigma level given minimal priors, and measure the rate of evolution for 0<z<1. We also fit correlation functions to our 3-D data as a function of cosmological parameters sigma_8 and Omega_Lambda. We find joint constraints on Omega_Lambda and sigma_8, demonstrating an improvement in accuracy by a factor of 2 over that available from 2D weak lensing for the same area.Comment: 11 pages, 4 figures; submitted to MNRA

    Stochastic Acceleration in the Western Hotspot of Pictor A

    Full text link
    Chandra's high resolution observations of radio galaxies require a revisit of the relevant electron acceleration processes. Although the diffusive shock particle acceleration model may explain spectra of spatially unresolved sources, it encounters difficulties in explaining the structure and spectral properties of recently discovered Chandra X-ray features in several low-power radio sources. We argue that these observations strongly suggest stochastic electron acceleration by magnetized turbulence, and show that the simplest stochastic particle acceleration model with energy independent acceleration and escape timescales can overcome most of these difficulties. We use the bright core of the western hotspot of Pictor A as an example to demonstrate the model characteristics, which may be tested with high energy observations.Comment: 12 pages, 2 figures. Accepted by ApJ Letter
    • 

    corecore