28 research outputs found

    Nonlinear excitations in CsNiF3 in magnetic fields perpendicular to the easy plane

    Full text link
    Experimental and numerical studies of the magnetic field dependence of the specific heat and magnetization of single crystals of CsNiF3 have been performed at 2.4 K, 2.9 K, and 4.2 K in magnetic fields up to 9 T oriented perpendicular to the easy plane. The experimental results confirm the presence of the theoretically predicted double peak structure in the specific heat arising from the formation of nonlinear spin modes. The demagnetizing effects are found to be negligible, and the overall agreement between the data and numerical predictions is better than reported for the case when the magnetic field was oriented in the easy plane. Demagnetizing effects might play a role in generating the difference observed between theory and experiment in previous work analyzing the excess specific heat using the sine-Gordon model.Comment: 6 pages, 5 figures, submitted to Phys. Rev.

    A mathematical framework for critical transitions: normal forms, variance and applications

    Full text link
    Critical transitions occur in a wide variety of applications including mathematical biology, climate change, human physiology and economics. Therefore it is highly desirable to find early-warning signs. We show that it is possible to classify critical transitions by using bifurcation theory and normal forms in the singular limit. Based on this elementary classification, we analyze stochastic fluctuations and calculate scaling laws of the variance of stochastic sample paths near critical transitions for fast subsystem bifurcations up to codimension two. The theory is applied to several models: the Stommel-Cessi box model for the thermohaline circulation from geoscience, an epidemic-spreading model on an adaptive network, an activator-inhibitor switch from systems biology, a predator-prey system from ecology and to the Euler buckling problem from classical mechanics. For the Stommel-Cessi model we compare different detrending techniques to calculate early-warning signs. In the epidemics model we show that link densities could be better variables for prediction than population densities. The activator-inhibitor switch demonstrates effects in three time-scale systems and points out that excitable cells and molecular units have information for subthreshold prediction. In the predator-prey model explosive population growth near a codimension two bifurcation is investigated and we show that early-warnings from normal forms can be misleading in this context. In the biomechanical model we demonstrate that early-warning signs for buckling depend crucially on the control strategy near the instability which illustrates the effect of multiplicative noise.Comment: minor corrections to previous versio

    Dysregulated Epstein-Barr virus infection in patients with CIDP

    Full text link
    Ubiquitous viruses have frequently been proposed as a cause or trigger of chronic immune-mediated diseases. Infections are reported to be temporally associated with clinical exacerbations in patients with chronic inflammatory demyelinating polyneuropathy (CIDP). We examined immunological parameters of herpesvirus infections in untreated patients with CIDP compared to demographically matched controls. Patients with CIDP were uniformly seropositive for EBV-specific IgG and the disease was associated with a moderately enhanced IgG reactivity to EBV-encoded antigens expressed during both B cell transformation and productive viral replication. Moreover, cellular EBV copy numbers were 3-fold increased in patients with CIDP. In contrast, humoral immune responses to other herpesviruses (HCMV, HSV) as well as virus-specific IgM responses were unchanged in CIDP. These data indicate that host-pathogen interactions during chronic EBV infection are dysregulated in treatment-naïve patients with CIDP
    corecore