65 research outputs found

    The Sail-Backed Reptile Ctenosauriscus from the Latest Early Triassic of Germany and the Timing and Biogeography of the Early Archosaur Radiation

    Get PDF
    Background Archosaurs (birds, crocodilians and their extinct relatives including dinosaurs) dominated Mesozoic continental ecosystems from the Late Triassic onwards, and still form a major component of modern ecosystems (>10,000 species). The earliest diverse archosaur faunal assemblages are known from the Middle Triassic (c. 244 Ma), implying that the archosaur radiation began in the Early Triassic (252.3–247.2 Ma). Understanding of this radiation is currently limited by the poor early fossil record of the group in terms of skeletal remains. Methodology/Principal Findings We redescribe the anatomy and stratigraphic position of the type specimen of Ctenosauriscus koeneni (Huene), a sail-backed reptile from the Early Triassic (late Olenekian) Solling Formation of northern Germany that potentially represents the oldest known archosaur. We critically discuss previous biomechanical work on the ‘sail’ of Ctenosauriscus, which is formed by a series of elongated neural spines. In addition, we describe Ctenosauriscus-like postcranial material from the earliest Middle Triassic (early Anisian) Röt Formation of Waldhaus, southwestern Germany. Finally, we review the spatial and temporal distribution of the earliest archosaur fossils and their implications for understanding the dynamics of the archosaur radiation. Conclusions/Significance Comprehensive numerical phylogenetic analyses demonstrate that both Ctenosauriscus and the Waldhaus taxon are members of a monophyletic grouping of poposauroid archosaurs, Ctenosauriscidae, characterised by greatly elongated neural spines in the posterior cervical to anterior caudal vertebrae. The earliest archosaurs, including Ctenosauriscus, appear in the body fossil record just prior to the Olenekian/Anisian boundary (c. 248 Ma), less than 5 million years after the Permian–Triassic mass extinction. These earliest archosaur assemblages are dominated by ctenosauriscids, which were broadly distributed across northern Pangea and which appear to have been the first global radiation of archosaurs

    Last Men Standing: Chlamydatus Portraits and Public Life in Late Antique Corinth

    Get PDF
    Notable among the marble sculptures excavated at Corinth are seven portraits of men wearing the long chlamys of Late Antique imperial office. This unusual costume, contemporary portrait heads, and inscribed statue bases all help confirm that new public statuary was created and erected at Corinth during the 4th and 5th centuries. These chlamydatus portraits, published together here for the first time, are likely to represent the Governor of Achaia in his capital city, in the company of local benefactors. Among the last works of the ancient sculptural tradition, they form a valuable source of information on public life in Late Antique Corinth

    Sedimentological and Rheological Properties of the Water–Solid Bed Interface in the Weser and Ems Estuaries, North Sea, Germany: Implications for Fluid Mud Classification

    Get PDF
    Fine, cohesive sediment suspensions are a common feature of estuarine environments. Generally, multilayer models are used to describe the vertical distribution of such sediments. Such conceptional models normally distinguish at least high suspended sediment concentrations (SSCs) as a topmost layer and a consolidated bed layer, often including an intermediate, fluid mud layer. Rheological, and in particular sedimentological properties are rarely included in these models. New data from two different estuaries provide new insights that can contribute toward the classification of nearbed cohesive sediments. The water–solid bed interfaces within the turbidity maximum zones of the Weser and Ems estuaries were sampled with 2–4-m-long cores. At 10-cm intervals, values of SSC, viscosity, particulate organic matter, mud: sand ratio, temperature, salinity, and grain-size distributions were determined. By normalizing these parameters to SSC and performing a cluster analysis, sediment suspensions of <20 g/L SSC, fluid mud with up to 500 g/L SSC, and an underlying cohesive/consolidated bed can each clearly be distinguished. However, changes in flow behaviour and sedimentological characteristics represented by a shift in the cluster grouping support a subdivision of the fluid mud into a low-viscosity (I) (20–200 g/L SSC) and a high-viscosity (II) (200–500 g/L SSC) layer. Furthermore, by normalizing SSC measurements, site-specific differences were observed in the rheological behaviour of the fluid mud which might be caused by differences in grain-size composition. This suggests that the widely accepted 3-layer model of vertical SSC profiles should be extended by two layers of fluid mud identified in this study
    corecore