12 research outputs found

    Iis - Integrated Interactome System: A Web-based Platform For The Annotation, Analysis And Visualization Of Protein-metabolite-gene-drug Interactions By Integrating A Variety Of Data Sources And Tools

    Get PDF
    Background: High-throughput screening of physical, genetic and chemical-genetic interactions brings important perspectives in the Systems Biology field, as the analysis of these interactions provides new insights into protein/gene function, cellular metabolic variations and the validation of therapeutic targets and drug design. However, such analysis depends on a pipeline connecting different tools that can automatically integrate data from diverse sources and result in a more comprehensive dataset that can be properly interpreted. Results: We describe here the Integrated Interactome System (IIS), an integrative platform with a web-based interface for the annotation, analysis and visualization of the interaction profiles of proteins/genes, metabolites and drugs of interest. IIS works in four connected modules: (i) Submission module, which receives raw data derived from Sanger sequencing (e.g. two-hybrid system); (ii) Search module, which enables the user to search for the processed reads to be assembled into contigs/singlets, or for lists of proteins/genes, metabolites and drugs of interest, and add them to the project; (iii) Annotation module, which assigns annotations from several databases for the contigs/singlets or lists of proteins/genes, generating tables with automatic annotation that can be manually curated; and (iv) Interactome module, which maps the contigs/singlets or the uploaded lists to entries in our integrated database, building networks that gather novel identified interactions, protein and metabolite expression/concentration levels, subcellular localization and computed topological metrics, GO biological processes and KEGG pathways enrichment. This module generates a XGMML file that can be imported into Cytoscape or be visualized directly on the web. Conclusions: We have developed IIS by the integration of diverse databases following the need of appropriate tools for a systematic analysis of physical, genetic and chemical-genetic interactions. IIS was validated with yeast two-hybrid, proteomics and metabolomics datasets, but it is also extendable to other datasets. IIS is freely available online at: http://www.lge.ibi.unicamp.br/lnbio/IIS/. © 2014 Carazzolle et al.96Ho, Y., Gruhler, A., Heilbut, A., Bader, G.D., Moore, L., Adams, S.-L., Millar, A., Tyers, M., Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry (2002) Nature, 415 (6868), pp. 180-183. , DOI 10.1038/415180aGiot, L., Bader, J.S., Brouwer, C., Chaudhuri, A., Kuang, B., Li, Y., Hao, Y.L., Rothberg, J.M., A Protein Interaction Map of Drosophila melanogaster (2003) Science, 302 (5651), pp. 1727-1736. , DOI 10.1126/science.1090289Li, S., Armstrong, C.M., Bertin, N., Ge, H., Milstein, S., Boxem, M., Vidalain, P.-O., Vidal, M., A Map of the Interactome Network of the Metazoan C. elegans (2004) Science, 303 (5657), pp. 540-543. , DOI 10.1126/science.1091403Stelzl, U., Worm, U., Lalowski, M., Haenig, C., Brembeck, F.H., Goehler, H., Stroedicke, M., Wanker, E.E., A human protein-protein interaction network: A resource for annotating the proteome (2005) Cell, 122 (6), pp. 957-968. , DOI 10.1016/j.cell.2005.08.029, PII S0092867405008664Tong, A.H.Y., Evangelista, M., Parsons, A.B., Xu, H., Bader, G.D., Page, N., Robinson, M., Boone, C., Systematic genetic analysis with ordered arrays of yeast deletion mutants (2001) Science, 294 (5550), pp. 2364-2368. , DOI 10.1126/science.1065810Zhu, F., Shi, Z., Qin, C., Tao, L., Liu, X., Therapeutic target database update 2012: A resource for facilitating target-oriented drug discovery (2012) Nucleic Acids Res, 40 (DATABASE ISSUE), pp. D1128-D1136Kang, H.G., Klessig, D.F., The involvement of the Arabidopsis CRT1 ATPase family in disease resistance protein-mediated signaling (2008) Plant Signal Behav, 3, pp. 689-690Kormish, J.D., Sinner, D., Zorn, A.M., Interactions between SOX factors and Wnt/beta-catenin signaling in development and disease (2009) Dev Dyn, 239 (1), pp. 56-68Stark, C., Breitkreutz, B.J., Reguly, T., Boucher, L., Breitkreutz, A., BioGRID: A general repository for interaction datasets (2006) Nucleic Acids Res, 34, pp. D535-D539Hermjakob, H., Montecchi-Palazzi, L., Lewington, C., Mudali, S., Kerrien, S., Orchard, S., Vingron, M., Apweiler, R., IntAct: An open source molecular interaction database (2004) Nucleic Acids Research, 32 (DATABASE ISS.), pp. D452-D455Xenarios, I., Rice, D.W., Salwinski, L., Baron, M.K., Marcotte, E.M., Eisenberg, D., DIP: The Database of Interacting Proteins (2000) Nucleic Acids Research, 28 (1), pp. 289-291Szklarczyk, D., Franceschini, A., Kuhn, M., Simonovic, M., Roth, A., The STRING database in 2011: Functional interaction networks of proteins, globally integrated and scored (2011) Nucleic Acids Res, 39 (DATABASE ISSUE), pp. D561-D568Zanzoni, A., Montecchi-Palazzi, L., Quondam, M., Ausiello, G., Helmer-Citterich, M., Cesareni, G., MINT: A Molecular INTeraction database (2002) FEBS Letters, 513 (1), pp. 135-140. , DOI 10.1016/S0014-5793(01)03293-8, PII S0014579301032938Keshava Prasad, T.S., Goel, R., Kandasamy, K., Keerthikumar, S., Kumar, S., Human Protein Reference Database - 2009 update (2009) Nucleic Acids Res, 37 (DATABASE ISSUE), pp. D767-D772Knox, C., Law, V., Jewison, T., Liu, P., Ly, S., DrugBank 3.0: A comprehensive resource for 'omics' research on drugs (2011) Nucleic Acids Res, 39 (DATABASE ISSUE), pp. D1035-D1041Gaulton, A., Bellis, L.J., Bento, A.P., Chambers, J., Davies, M., ChEMBL: A large-scale bioactivity database for drug discovery (2012) Nucleic Acids Res, 40 (DATABASE ISSUE), pp. D1100-D1107Wishart, D.S., Knox, C., Guo, A.C., Eisner, R., Young, N., HMDB: A knowledgebase for the human metabolome (2009) Nucleic Acids Res, 37 (DATABASE ISSUE), pp. D603-D610Jewison, T., Neveu, V., Lee, J., Knox, C., Liu, P., YMDB: The Yeast Metabolome Database (2012) Nucleic Acids Res, 40 (DATABASE ISSUE), pp. D815-D820Guo, A.C., Jewison, T., Wilson, M., Liu, Y., Knox, C., ECMDB: The E. coli Metabolome Database (2013) Nucleic Acids Res, 41 (DATABASE ISSUE), pp. D625-D630Kanehisa, M., Goto, S., Kawashima, S., Nakaya, A., The KEGG databases at GenomeNet (2002) Nucleic Acids Res, 30 (1), pp. 42-46Joshi-Tope, G., Gillespie, M., Vastrik, I., D'Eustachio, P., Schmidt, E., De Bono, B., Jassal, B., Stein, L., Reactome: A knowledgebase of biological pathways (2005) Nucleic Acids Research, 33 (DATABASE ISS.), pp. D428-D432. , DOI 10.1093/nar/gki072De Bodt, S., Proost, S., Vandepoele, K., Rouze, P., Peer, Y., Predicting protein-protein interactions in Arabidopsis thaliana through integration of orthology, gene ontology and co-expression (2009) BMC Genomics, 10, p. 288Lin, M., Hu, B., Chen, L., Sun, P., Fan, Y., Computational identification of potential molecular interactions in Arabidopsis (2009) Plant Physiol, 151, pp. 34-46Berger, S.I., Posner, J.M., Ma'Ayan, A., Genes2Networks: Connecting lists of gene symbols using mammalian protein interactions databases (2007) BMC Bioinformatics, 8, p. 372Mostafavi, S., Ray, D., Warde-Farley, D., Grouios, C., Morris, Q., GeneMANIA: A real-time multiple association network integration algorithm for predicting gene function (2008) Genome Biol, (SUPPL. 1), pp. S4Ingenuity Pathway Analysis (IPA), , http://www.ingenuity.com/products/pathways_analysis.html, website. Available: Accessed 2014 Feb 25Pellet, J., Meyniel, L., Vidalain, P.O., De Chassey, B., Tafforeau, L., pISTil: A pipeline for yeast two-hybrid Interaction Sequence Tags identification and analysis (2009) BMC Res Notes, 2, p. 220Meirelles, G.V., Lanza, D.C.F., Silva, J.C., Bernachi, J.S., Leme, A.P., Characterization of hNek6 interactome reveals an important role for its short N-terminal domain and colocalizations with proteins at the centrosome (2010) J Proteome Res, 9 (12), pp. 6298-6316Westman, J.O., Taherzadeh, M.J., Franzén, C.J., Proteomic analysis of the increased stress tolerance of saccharomyces cerevisiae encapsulated in liquid core alginate-chitosan capsules (2012) PLoS One, 7 (11), pp. e49335Fong, M.Y., McDunn, J., Kakar, S.S., Identification of metabolites in the normal ovary and their transformation in primary and metastatic ovarian cancer (2011) PLoS One, 6 (5), pp. e19963Ewing, B., Green, P., Base-calling of automated sequencer traces using phred. II. Error probabilities (1998) Genome Research, 8 (3), pp. 186-194Baudet, C., Dias, Z., Analysis of slipped sequences in EST projects (2006) Genet Mol Res, 5 (1), pp. 169-181Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J., Gapped BLAST and PSI-BLAST: A new generation of protein database search programs (1997) Nucleic Acids Research, 25 (17), pp. 3389-3402. , DOI 10.1093/nar/25.17.3389Huang, X., Madan, A., CAP3: A DNA sequence assembly program (1999) Genome Research, 9 (9), pp. 868-877. , DOI 10.1101/gr.9.9.868Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Sherlock, G., Gene ontology: Tool for the unification of biology (2000) Nature Genetics, 25 (1), pp. 25-29. , DOI 10.1038/75556Uhlen, M., Oksvold, P., Fagerberg, L., Lundberg, E., Jonasson, K., Towards a knowledge-based Human Protein Atlas (2010) Nat Biotechnol, 28 (12), pp. 1248-1250Marchler-Bauer, A., Lu, S., Anderson, J.B., Chitsaz, F., Derbyshire, M.K., CDD: A Conserved Domain Database for the functional annotation of proteins (2011) Nucleic Acids Res, 39 (DATABASE ISSUE), pp. D225-D229Mouse Genome Informatics (MGI), , http://www.informatics.jax.org/phenotypes.shtml, Available: Accessed 2014 May 29Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E., The Protein Data Bank (2000) Nucleic Acids Research, 28 (1), pp. 235-242Linding, R., Jensen, L.J., Diella, F., Bork, P., Gibson, T.J., Russell, R.B., Protein disorder prediction: Implications for structural proteomics (2003) Structure, 11 (11), pp. 1453-1459. , DOI 10.1016/j.str.2003.10.002Sigrist, C.J., Cerutti, L., De Castro, E., Langendijk-Genevaux, P.S., Bulliard, V., PROSITE, a protein domain database for functional characterization and annotation (2010) Nucleic Acids Res, 38, pp. D161-D166Hubbard, T., Barker, D., Birney, E., Cameron, G., Chen, Y., Clark, L., Cox, T., Clamp, M., The Ensembl genome database project (2002) Nucleic Acids Research, 30 (1), pp. 38-41Boeckmann, B., Bairoch, A., Apweiler, R., Blatter, M.-C., Estreicher, A., Gasteiger, E., Martin, M.J., Schneider, M., The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003 (2003) Nucleic Acids Research, 31 (1), pp. 365-370. , DOI 10.1093/nar/gkg095Magrane, M., Consortium, U., UniProt Knowledgebase: A hub of integrated protein data (2011) Database (Oxford), 2011, pp. bar009Boyle, E.I., Weng, S., Gollub, J., Jin, H., Botstein, D., Cherry, J.M., Sherlock, G., GO::TermFinder - Open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes (2004) Bioinformatics, 20 (18), pp. 3710-3715. , DOI 10.1093/bioinformatics/bth456Press, W.A., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P., (2007) Numerical Recipes: The Art of Scientic Computing, , Cambridge University PressLopes, C.T., Franz, M., Kazi, F., Donaldson, S.L., Morris, Q., Cytoscape Web: An interactive web-based network browser (2010) Bioinformatics, 26 (18), pp. 2347-2348Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Ideker, T., Cytoscape: A software Environment for integrated models of biomolecular interaction networks (2003) Genome Research, 13 (11), pp. 2498-2504. , DOI 10.1101/gr.1239303Chen, J., Hsu, W., Lee, M.L., Ng, S.-K., Increasing confidence of protein interactomes using network topological metrics (2006) Bioinformatics, 22 (16), pp. 1998-2004. , DOI 10.1093/bioinformatics/btl335Chen, J., Chua, H.N., Hsu, W., Lee, M.-L., Ng, S.-K., Increasing confidence of protein-protein interactomes (2006) 17th International Conference on Genome Informatics. Yokohama, Japan, 2006, pp. 284-297Chua, H.N., Sung, W.-K., Wong, L., Exploiting indirect neighbours and topological weight to predict protein function from protein-protein interactions (2006) Bioinformatics, 22 (13), pp. 1623-1630. , DOI 10.1093/bioinformatics/btl145Gerstein, M., Lan, N., Jansen, R., Proteomics. Integrating interactomes (2002) Science, 295, pp. 284-287Liu, G., Wong, L., Chua, H.N., Complex discovery from weighted PPI networks (2009) Bioinformatics, 25, pp. 1891-1897Brandão, M.M., Dantas, L.L., Silva-Filho, M.C., AtPIN: Arabidopsis thaliana protein interaction network (2009) BMC Bioinformatics, 10, p. 454Breitkreutz, B.J., Stark, C., Tyers, M., Osprey: A network visualization system (2003) Genome Biol, 4 (3), pp. R22Meirelles, G.V., Perez, A.M., Souza, E.E., Basei, F.L., Papa, P.F., "Stop Ne(c)king around": How systems biology can help to characterize the functions of Nek family kinases from cell cycle regulation to DNA damage response (2014) World J Biol Chem, 5 (2), pp. 141-160Matsuda, A., Suzuki, Y., Honda, G., Muramatsu, S., Matsuzaki, O., Nagano, Y., Doi, T., Sugano, S., Large-scale identification and characterization of human genes that activate NF-kappaB and MAPK signaling pathways (2003) Oncogene, 22 (21), pp. 3307-3318. , DOI 10.1038/sj.onc.1206406Wang, Y., Tang, Y., Teng, L., Wu, Y., Zhao, X., Pei, G., Association of beta-arrestin and TRAF6 negatively regulates Toll-like receptor-interleukin 1 receptor signaling (2006) Nature Immunology, 7 (2), pp. 139-147. , DOI 10.1038/ni1294, PII N1294Liu, H., Liu, K., Bodenner, D.L., Estrogen receptor inhibits interleukin-6 gene expression by disruption of nuclear factor kappaB transactivation (2005) Cytokine, 31 (4), pp. 251-257. , DOI 10.1016/j.cyto.2004.12.008, PII S1043466605000268Talebnia, F., Taherzadeh, M.J., In situ detoxification and continuous cultivation of dilute-acid hydrolyzate to ethanol by encapsulated S. cerevisiae (2006) Journal of Biotechnology, 125 (3), pp. 377-384. , DOI 10.1016/j.jbiotec.2006.03.013, PII S0168165606002100Westman, J.O., Manikondu, R.B., Franzen, C.J., Taherzadeh, M.J., Encapsulation-induced stress helps Saccharomyces cerevisiae resist convertible lignocellulose derived inhibitors (2012) Int J Mol Sci, 13, pp. 11881-11894Lupetti, A., Danesi, R., Campa, M., Tacca, M.D., Kelly, S., Molecular basis of resistance to azole antifungals (2002) Trends in Molecular Medicine, 8 (2), pp. 76-81. , DOI 10.1016/S1471-4914(02)02280-3, PII S147149140102247XBarsky, A., Gardy, J.L., Hancock, R.E.W., Munzner, T., Cerebral: A Cytoscape plugin for layout of and interaction with biological networks using subcellular localization annotation (2007) Bioinformatics, 23 (8), pp. 1040-1042. , DOI 10.1093/bioinformatics/btm05

    Kinase Inhibitor Profile For Human Nek1, Nek6, And Nek7 And Analysis Of The Structural Basis For Inhibitor Specificity

    Get PDF
    Human Neks are a conserved protein kinase family related to cell cycle progression and cell division and are considered potential drug targets for the treatment of cancer and other pathologies. We screened the activation loop mutant kinases hNek1 and hNek2, wild-type hNek7, and five hNek6 variants in different activation/phosphorylation statesand compared them against 85 compounds using thermal shift denaturation. We identified three compounds with significant Tm shifts: JNK Inhibitor II for hNek1(Ä262-1258)-(T162A), Isogranulatimide for hNek6(S206A), and GSK-3 Inhibitor XIII for hNek7wt. Each one of these compounds was also validated by reducing the kinases activity by at least 25%. The binding sites for these compounds were identified by in silico docking at the ATP-binding site of the respective hNeks. Potential inhibitors were first screened by thermal shift assays, had their efficiency tested by a kinase assay, and were finally analyzed by molecular docking. Our findings corroborate the idea of ATP-competitive inhibition for hNek1 and hNek6 and suggest a novel non-competitive inhibition for hNek7 in regard to GSK-3 Inhibitor XIII. Our results demonstrate that our approach is useful for finding promising general and specific hNekscandidate inhibitors, which may also function as scaffolds to design more potent and selective inhibitors.20111761191Rubin, G.M., Yandell, M.D., Wortman, J.R., Gabor Miklos, G.L., Nelson, C.R., Hariharan, I.K., Fortini, M.E., Fleischmann, W., Comparative genomics of the eukaryotes (2000) Science, 287, pp. 2204-2215Johnson, L.N., Lowe, E.D., Noble, M.E., Owen, D.J., The Eleventh Datta Lecture. The structural basis for substrate recognition and control by protein kinases (1998) FEBS Lett., 430, pp. 1-11Hanks, S.K., Eukaryotic protein kinases (1991) Curr. Opin. Struct. Biol., 1, pp. 369-383Jeffrey, P.D., Russo, A.A., Polyak, K., Gibbs, E., Hurwitz, J., Massagué, J., Pavletich, N.P., Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex (1995) Nature, 376, pp. 313-320Yamaguchi, H., Hendrickson, W.A., Structural basis for activation of human lymphocyte kinase Lck upon tyrosine phosphorylation (1996) Nature, 384, pp. 484-489Canagarajah, B.J., Khokhlatchev, A., Cobb, M.H., Goldsmith, E.J., Activation mechanism of the MAP kinase ERK2 by dual phosphorylation (1997) Cell, 90, pp. 859-869Hubbard, S.R., Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog (1997) EMBO J, 16, pp. 5572-5581Fry, A.M., O'Regan, L., Sabir, S.R., Bayliss, R., Cell cycle regulation by the NEK family of protein kinases (2012) J. Cell Sci., 125, pp. 4423-4433Meirelles, G.V., Perez, A.M., Souza, E.E., Basei, F.L., Papa, P.F., Melo Hanchuk, T.D., Cardoso, V.B., Kobarg, J., "Stop Ne(c)king around": How systems biology can help to characterize the functions of Nek family kinases from cell cycle regulation to DNA damage response (2014) World J. Biol. Chem., 5, pp. 141-160Fry, A.M., Mayor, T., Meraldi, P., Stierhof, Y.D., Tanaka, K., Nigg, E.A., C-Nap1, a novel centrosomal coiled-coil protein and candidate substrate of the cell cycle-regulated protein kinase Nek2 (1998) J. Cell Biol., 141, pp. 1563-1574Quarmby, L.M., Mahjoub, M.R., Caught nek-ing: Cilia and centrioles (2005) J. Cell Sci., 118, pp. 5161-5169Meirelles, G.V., Silva, J.C., Mendonça, Y.A., Ramos, C.H., Torriani, I.L., Kobarg, J., Human Nek6 is a monomeric mostly globular kinase with an unfolded short N-terminal domain (2011) BMC Struct. Biol., 11, p. 12Belham, C., Roig, J., Caldwell, J.A., Aoyama, Y., Kemp, B.E., Comb, M., Avruch, J., A mitotic cascade of NIMA family kinases. Nercc1/Nek9 activates the Nek6 and Nek7 kinases (2003) J. Biol. Chem., 278, pp. 34897-34909Yin, M.J., Shao, L., Voehringer, D., Smeal, T., Jallal, B., The serine/threonine kinase Nek6 is required for cell cycle progression through mitosis (2003) J. Biol. Chem., 278, pp. 52454-52460Yissachar, N., Salem, H., Tennenbaum, T., Motro, B., Nek7 kinase is enriched at the centrosome, and is required for proper spindle assembly and mitotic progression (2006) FEBS Lett., 580, pp. 6489-6495Kim, S., Lee, K., Rhee, K., NEK7 is a centrosomal kinase critical for microtubule nucleation (2007) Biochem. Biophys. Res.Commun., 360, pp. 56-62Roig, J., Mikhailov, A., Belham, C., Avruch, J., Nercc1, a mammalian NIMA-family kinase, binds the Ran GTPase and regulates mitotic progression (2002) Genes Dev., 16, pp. 1640-1658Upadhya, P., Birkenmeier, E.H., Birkenmeier, C.S., Barker, J.E., Mutations in a NIMA-related kinase gene, Nek1, cause pleiotropic effects including a progressive polycystic kidney disease in mice (2000) Proc. Natl. Acad. Sci. USA, 97, pp. 217-221Liu, S., Lu, W., Obara, T., Kuida, S., Lehoczky, J., Dewar, K., Drummond, I.A., Beier, D.R., A defect in a novel Nek-family kinase causes cystic kidney disease in the mouse and in zebrafish (2002) Development, 129, pp. 5839-5846Chen, J., Li, L., Zhang, Y., Yang, H., Wei, Y., Zhang, L., Liu, X., Yu, L., Interaction of Pin1 with Nek6 and characterization of their expression correlation in Chinese hepatocellular carcinoma patients (2006) Biochem. Biophys. Res. Commun., 341, pp. 1059-1065Chen, Y., Chen, P.L., Chen, C.F., Jiang, X., Riley, D.J., Never-in mitosis related kinase 1 functions in DNA damage response and checkpoint control (2008) Cell Cycle, 7, pp. 3194-3201Lee, M.Y., Kim, H.J., Kim, M.A., Jee, H.J., Kim, A.J., Bae, Y.S., Park, J.I., Yun, J., Nek6 is involved in G2/M phase cell cycle arrest through DNA damage induced phosphorylation (2008) Cell Cycle, 7, pp. 2705-2709Innocenti, P., Cheung, K.M., Solanki, S., Mas-Droux, C., Rowan, F., Yeoh, S., Boxall, K., Hardy, T., Design of potent and selective hybrid inhibitors of the mitotic kinase Nek2: Structure-activity relationship, structural biology, and cellular activity (2012) J. Med. Chem., 55, pp. 3228-3241Solanki, S., Innocenti, P., Mas-Droux, C., Boxall, K., Barillari, C., Van Montfort, R.L., Aherne, G.W., Hoelder, S., Benzimidazole inhibitors induce a DFG-out conformation of never in mitosis gene A-related kinase 2 (Nek2) without binding to the back pocket and reveal a nonlinear structure-activity relationship (2011) J. Med. Chem., 54, pp. 1626-1639Whelligan, D.K., Solanki, S., Taylor, D., Thomson, D.W., Cheung, K.M., Boxall, K., Mas-Droux, C., Grummitt, C.G., Aminopyrazine inhibitors binding to an unusual inactive conformation of the mitotic kinase Nek2: SAR and structural characterization (2010) J. Med. Chem., 53, pp. 7682-7698Srinivasan, P., ChellaPerumal, P., Sudha, A., Discovery of novel inhibitors for Nek6 protein through homology model assisted structure based virtual screening and molecular docking approaches (2014) Sci. World J., 2014. , ID: 967873Rellos, P., Ivins, F.J., Baxter, J.E., Pike, A., Nott, T.J., Parkinson, D.M., Das, S., Shen, Q.Y., Structure and regulation of the human Nek2 centrosomal kinase (2007) J. Biol. Chem., 282, pp. 6833-6842Westwood, I., Cheary, D.M., Baxter, J.E., Richards, M.W., Van Montfort, R.L., Fry, A.M., Bayliss, R., Insights into the conformational variability and regulation of human Nek2 kinase (2009) J. Mol. Biol, 386, pp. 476-485Richards, M.W., O'Regan, L., Mas-Droux, C., Blot, J.M., Cheung, J., Hoelder, S., Fry, A.M., Bayliss, R., An autoinhibitory tyrosine motif in the cell-cycleregulated Nek7 kinase is released through binding of Nek9 (2009) Mol. Cell, 36, pp. 560-570Geromichalos, G.D., Importance of molecular computer modeling in anticancer drug development (2007) J. Buon., 12, pp. S101-S118Vedadi, M., Niesen, F.H., Allali-Hassani, A., Fedorov, O.Y., Finerty, P.J., Jr., Wasney, G.A., Yeung, R., Berglund, H., Chemical screening methods to identify ligands that promote protein stability, protein crystallization, and structure determination (2006) Proc. Natl. Acad. Sci. USA, 103, pp. 15835-15840Lengauer, T., Rarey, M., Computational methods for biomolecular docking (1996) Curr. Opin. Struct. Biol., 6, pp. 402-406Fedorov, O., Marsden, B., Pogacic, V., Rellos, P., Müller, S., Bullock, A.N., Schwaller, J., Knapp, S., A systematic interaction map of validated kinase inhibitors with Ser/Thr kinases (2007) Proc. Natl. Acad. Sci. USA, 104, pp. 20523-20528Roberge, M., Berlinck, R.G., Xu, L., Anderson, H.J., Lim, L.Y., Curman, D., Stringer, C.M., Vincent, I., High-throughput assay for G2 checkpoint inhibitors and identification of the structurally novel compound isogranulatimide (1998) Cancer Res, 58, pp. 5701-5706Jiang, X., Zhao, B., Britton, R., Lim, L.Y., Leong, D., Sanghera, J.S., Zhou, B.B., Roberge, M., Inhibition of Chk1 by the G2 DNA damage checkpoint inhibitor isogranulatimide (2004) Mol. Cancer Ther., 3, pp. 1221-1227De Castro, E., Sigrist, C.J.A., Gattiker, A., Bulliard, V., Langendijk-Genevaux, P.S., Gasteiger, E., Bairoch, A., Hulo, N., ScanProsite: Detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins (2006) Nucleic Acids Res., 34, pp. W362-W365Gavrin, L.K., Saiah, E., Approaches to discover non-ATP site kinase inhibitors (2013) Med. Chem. Commun., 4, pp. 41-51Oliveira, S.H., Ferraz, F.A., Honorato, R.V., Xavier-Neto, J., Sobreira, T.J., De Oliveira, P.S., KVFinder: Steered identification of protein cavities as a PyMOL plugin (2014) BMC Bioinform., 15, p. 197Meirelles, G.V., Lanza, D.C.F., Silva, J.C., Bernachi, J.S., Leme, A.F.P., Kobarg, J., Characterization of hNek6 Interactome Reveals an Important Role for Its Short N-Terminal Domain and Colocalization with Proteins at the Centrosome (2010) J. Proteome Res., 9, pp. 6298-6316Trott, O., Olson, A.J., AutoDockVina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading (2010) J. Comput. Chem., 31, pp. 455-46

    Contribuição da heterogeneidade de linhas de regressão para a recomendação de novas cultivares

    Get PDF
    O objetivo deste trabalho foi evidenciar a contribuição da análise da heterogeneidade das linhas de regressão para a recomendação de novas cultivares, pela metodologia de Eberhart & Russell. Um experimento com dez genótipos de arroz, avaliados em oito ambientes, foi utilizado para ilustração da metodologia. Utilizou-se o delineamento de blocos ao acaso com três repetições. A soma dos quadrados da interação genótipo x ambiente (GxA) foi decomposta para avaliação da heterogeneidade das linhas de regressão e dos desvios acumulados da linearidade. A heterogeneidade das linhas de regressão foi analisada com o uso do teste t sobre os coeficientes de regressão linear dos genótipos. Os dois componentes ortogonais da interação GxA foram significativos. A análise da heterogeneidade das linhas de regressão permitiu detectar incoerências na adaptabilidade dos genótipos, o que diminui as chances de recomendações equivocadas de cultivares. Os genótipos foram classificados de acordo com a eficiência da metodologia de Eberhart & Russell em explicar a natureza do desempenho genotípico diante das mudanças nos ambientes. A avaliação da heterogeneidade das linhas de regressão contribui para a recomendação mais efetiva de novas cultivares com a metodologia de Eberhart & Russell

    Treatment Of Varicose Veins With Endovenous Laser: A Prospective 39-month Follow-up Study [tratamento De Varizes Com Laser Endovenoso: Estudo Prospectivo Com Seguimento De 39 Meses]

    No full text
    Objective: To evaluate results of endovenous laser treatment for primary varicose veins. Patients and method: From July 2001 to September 2004 (39 months), 253 outpatients (417 limbs) were treated with 810 and 980 nm diode laser energy delivered percutaneously using optical fiber introduced by puncture under ultrasound guidance. Tumescent anesthesia (50-150 ml of 0.2% lidocaine) was delivered perivenously. Power and duration of the pulse were determined by vein diameter. Duplex control was performed at 7 days, 1 month, 3 months, 6 months, 1 year and yearly thereafter to assess treatment efficacy and adverse effects. Results: Primary great saphenous vein occlusion was obtained in 405 of 417 members (97.1%). Twelve recurrent cases (2.9%) were successfully treated. Mean follow-up time was 18 months. During this period, global recurrence rate of varicose veins was 7.4%; 6.3% (26 limbs) related to tributary and collateral veins of the saphenofemoral junction, and 1.2% (five limbs) with great saphenous vein recanalization. All recurrences occurred between 3 and 12 months. Ecchymosis was the most common adverse effect (60.6%). Other complications were: moderate pain during the procedure (16.1%); hematoma (5.5%), superficial phlebitis of varicose tributaries (3.4%), hyperpigmentation (2.9%), transient paresthesia (3.4%). There were no cases of great saphenous vein thrombophlebitis, deep vein thrombosis or pulmonary emboli. Conclusion: Varicose vein treatment with endovenous laser technique was successful in occluding great saphenous vein and its branches, with self-limited adverse effects and recurrence rate lower than 8% in the follow-up period. Copyright © 2006 by Sociedade Brasileira de Angiologia e de Cirurgia Vascular.53184193Maffei, F.H., Magaldi, C., Pinho, S.Z., Varicose veins and chronic venous insufficiency in Brazil: Prevalence among 1755 inhabitants of a country town (1986) Int J Epidemiol, 15, pp. 210-217Bergan, J.J., Ballard, J.I., Correction of superficial reflux (1998) Atlas of Endoscopic Perforator Vein Surgery, pp. 98-103. , Gloviczki P, Bergan JJ, editors. London: SpringerLofgren, E.P., Lofgren, K.A., Recurrence of varicose veins after the stripping operation (1971) Arch Surg, 102, pp. 111-114Dodd, H., Cockett, F.B., (1976) The Pathology and Surgery of the Veins of the Lewer Limb. 2nd Ed., pp. 210-214. , London: LivingstoneDavies, A.H., Steffen, C., Cosgrove, C., Wilkins, D.C., Varicose vein surgery: Patient satisfaction (1995) J R Coll Surg Edinb, 40, pp. 298-299Navarro, L., Min, R.J., Bone, C., Endovenous Laser: A new minimally invasive method of treatment of varicose veins-preliminary observations using an 810 nm diode laser (2001) Dermatol Surg, 27, pp. 117-122Proebstle, T.M., Lehr, H.A., Kargl, A., Endovenous treatment of the greater saphenous vein with a 940-nm diode laser: Thrombotic occlusion after endoluminal thermal damage by laser- generated steam bubbles (2002) J Vasc Surg, 35, pp. 729-736Timperman, P.E., Sichlau, M., Ryu, R.K., Greater energy delivery improves treatment success of endovenous laser treatment of incompetent saphenous veins (2004) J Vasc Interv Radiol, 15, pp. 1061-1063Dwerryhouse, S., Davies, B., Harradine, K., Earnshaw, J.J., Stripping the long saphenous vein reduces the rate of reoperation for recurrent varicose veins: Five-year results of a randomized trial (1999) J Vasc Surg, 29, pp. 589-592Manfrini, S., Gasbarro, V., Danielsson, G., Endovenous management of saphenous vein reflux (2000) J Vasc Surg, 32, pp. 330-342. , Endovenous Reflux Management Study GroupGlass, G.M., Neovascularisation in recurrence of the varicose great saphenous vein following transection (1987) Phlebology, 2, pp. 81-92Nyamekye, I., Shephard, N.A., Davies, B., Heather, B.P., Earnshaw, J.J., Clinicopathological evidence that neovascularisation is a cause of recurrent varicose veins (1998) Eur J Vasc Endovasc Surg, 15, pp. 412-415Van Rij, A.M., Jones, G.T., Hill, G.B., Jiang, P., Neovascularization and recurrent varicose veins: More histologic and ultrasound evidence (2004) J Vasc Surg, 40, pp. 296-302Fischer, R., Linde, N., Duff, C., Jeanneret, C., Chandler, J.G., Seeber, P., Late recurrent saphenofemoral junction reflux after ligation and stripping of the greater saphenous vein (2001) J Vasc Surg, 34, pp. 236-240Creton, D., Prosthetic material interposition on the crossectomy stump in varicose vein recurrence surgery: Preliminary report on the prevention of angiogenesis (1998) Scripta Phlebol, 6, pp. 4-7Glass, G.M., Prevention of saphenofemoral and saphenopopliteal recurrence of varicose veins by forming a partition to contain neovascularisation (1998) Phebology, 13, pp. 3-9Jakobsen, B.H., The value of different forms of treatment for varicose veins (1979) Br J Surg, 66, pp. 182-184Proebstle, T.M., Gul, D., Lehr, H.A., Kargl, A., Knop, J., Infrequent early recanalization of greater saphenous vein after endovenous laser treatment (2003) J Vas Surg, 38, pp. 511-516Min, R.J., Khilnani, N., Zimmet, S.E., Endovenous laser treatment of saphenous vein reflux: Long-term results (2003) J Vasc Interv Radiol, 14, pp. 991-996Timperman, P.E., Arteriovenous fistula after endovenous laser treatment of the short saphenous vein (2004) J Vasc Interv Radiol, 15, pp. 625-627Min, R.J., Zimmet, S.E., Isaacs, M.N., Forrestal, M.D., Endovenous laser treatment of the incompetent greater saphenous vein (2001) J Vasc Interv Radiol, 12, pp. 1167-1171Gerard, J.L., Desgranges, P., Becquemin, J.P., Desse, H., Melliere, D., Peut-on traiter les grandes saphénes variqueuses par laser endoveineaux en ambulatoire (2002) J Mal Vasc, 27, pp. 222-225Chang, C.J., Chua, J.J., Endovenous laser photocoagulation (EVLP) for varicose veins (2002) Lasers Surg Med, 31, pp. 257-262Oh, C.K., Jung, D.S., Jang, H.S., Kwon, K.S., Endovenous laser surgery of the incompetent greater saphenous vein with a 980 nm diode laser (2003) Dermatol Surg, 29, pp. 1135-1140Perkowski, P., Ravi, R., Gowda, R.C., Endovenous laser ablation of the saphenous vein for treatment of venous insufficiency and varicose veins: Early results from a large single-center experience (2004) J Endovasc Ther, 11, pp. 132-138Soracco, J.E., D'Ámbola, J.L., Ciucci, J.L., Godoy, J.M.P., Belczak, C.E.Q., Complicações no tratamento com laser endovascular em varizes de membros inferiores (2005) J Vasc Bras, 4, pp. 333-335Mozes, G., Kalra, M., Carmo, M., Swenson, L., Gloviczki, P., Extension of saphenous thrombus into the femoral vein: A potential complication of new endovenous ablation techniques (2005) J Vasc Surg, 41, pp. 130-135Goldman, M.P., Mauricio, M., Rao, J., Intravascular 1320-nm laser closure of the great saphenous vein: A 6- to 12-month follow-up study (2004) Dermatol Surg, 30, pp. 1380-1385Proebstle, T.M., Moehler, T., Gül, D., Herdemann, S., Endovenous treatment of the great saphenous vein using a 1,320 nm Nd:YAG laser causes fewer side effects than using a 940 nm diode laser (2005) Dermatol Surg, 31, pp. 1678-1683. , discussion 1683-4Agus, G.B., Mancini, S., Magi, G., The first 1000 cases of Italian Endovenous-Laser Working Group (IEWG). Rationale, and long-term outcomes for the 1999-2003 period (2006) Int Angiol, 25, pp. 209-215. , IEWGLisbona, C., Pérez, P., Segura, J., Puncernau, X., Laser surgery in venous insufficiency: E.L.A.V. personal technique (2004) J Vasc Bras, 3, pp. 403-406Keith Jr., L.M., Smead, W.L., Saphenous vein stripping and its complications (1983) Surg Clin North Am, 63, pp. 1303-1312Lofgren, E.P., Coates, H.L., O'Brien, P.C., Clinically suspect pulmonary embolism after vein stripping (1976) Mayo Clin Proc, 51, pp. 77-80Bounameaux, H., Huber, O., Postoperative deep vein thrombosis and surgery for varicose veins (1996) BMJ, 312, p. 115

    Prevalence Of Abdominal Aortic Dilatation In Patients Aged 60 Years Or Older With Coronary Disease [prevalência De Dilatação Da Aorta Abdominal Em Coronariopatas Idosos]

    No full text
    Background: Indiscriminate screening programs for abdominal aortic aneurysm will help a small percentage of individuals. However, when considering groups with risk factors associated with aortic dilatation, which increases the probability of the disease, such programs will provide an adequate allocation of resources and a greater benefit to the population. Programs guided by medical societies, providing an early diagnosis of vascular diseases and consequently a better preparation of patients, would result in better survival rates with lower morbidity. Objective: To evaluate the prevalence of abdominal aortic dilatation in patients aged 60 years or older with atherosclerotic coronary disease diagnosed by coronary angiography. Methods: The sample selected for this study considered the fact that preoperative assessment of vascular surgery had not been indication for catheterization. Evaluation was then performed, based on anamnesis, physical examination and ultrasound Doppler of the abdominal aorta. Statistical analysis started with chi-square test, with further multivariate logistic regression analysis and univariate logistic regression, with p ≤ 0.05 considered significant. Results: Of 180 patients, 57 (31.7%) were female and 123 (68.3%) were male. Agevaried from 60 to 80 years, with mean of 66.7 years. Among the 16 individuals with abdominal aortic dilatation (10 aneurysms and six dilatations), only onewas female. The risk of an individual with one atherosclerotic coronary lesion presenting abdominal aortic dilatation was 0.4%. Similarly, in those with two or three lesions the risk was 1.7, and 4.5% in those with more than three lesions. When associated with smoking, these values were 6.9, 11.8 and 27.1%, respectively. Conclusion: The present study leads to the conclusion that prevalence of abdominal aortic dilatation was 8.9% (16 out of 180 patients) in this specific sample. It was more prevalent in males, smokers and associated with presence of diffuse atherosclerotic lesions of the coronary arteries. Copyright © 2007 by Sociedade Brasileira de Angiologia e de Cirurgia Vascular.62114123Matas R. Aneurismas. In: Martorell F. Angiologia: enfermedades vasculares. Barcelona: Salvat1972. p. 203-8Grande, R.F., Aspectos históicos de la cirugía de los aneurismas. Matas y las nuevas técnicas (1997) Patología Vasc, 3, pp. 75-87Kruppski WC. Arterial aneurysms. In: Rutherford RB. Vascular surgery. 4th ed. v. 2. Philadelphia: Saunders1995. p. 1025-32Brito JC. História da cirurgia dos aneurismas da aorta abdominal. In: Bonamigo TP, Von Ristow A. Aneurismas. Rio de Janeiro: Di livros2000. p. 23-30Gama DA. Passado, presente e futuro do tratamento do aneurisma da aorta abdominal. In: Bonamigo TP, Von Ristow A. Aneurismas. Rio de Janeiro: Di livros2000. p. 31-8Harris, L.M., Faggioli, G.L., Fiedler, R., Curl, G.R., Ricotta, J.J., Ruptured abdominal aortic aneurysms: Factors affecting mortality rates (1991) J Vasc Surg, 14, pp. 812-818. , discussion 819-20Gloviczki, P., Pairolero, P.C., Mucha Jr., P., Ruptured abdominal aortic aneurysms: Repair should not be denied (1992) J Vasc Surg, 15, pp. 851-857. , discussion 857-9Ernst, C.B., Abdominal aortic aneurysm (1993) N Engl J Med, 328, pp. 1167-1172Johansson, G., Swedenborg, J., Ruptured abdominal aortic aneurysms: A study of incidence and mortality (1986) Br J Surg, 73, pp. 101-103Collin, J., Araujo, L., Walton, J., Lindsell, D., Oxford screening programme for abdominal aortic aneurysm in men aged 65 to 74 years (1988) Lancet, 2, pp. 613-615Karkos, C.D., Mukhopadhyay, U., Papakostas, I., Ghosh, J., Thomson, G.J., Hughes, R., Abdominal aortic aneurysm: The role of clinical examination and opportunistic detection (2000) Eur J Vasc Endovasc Surg, 19, pp. 299-303Bonamigo TP. Tratamento de urgência nos aneurismas da aorta abdominal. In: Bonamigo TP, Burihan E, Cinelli Jr. M, von Ristow A. Doença da aorta e seus ramos. São Paulo: Fundo Editorial Byk1991. p. 48-58Petersen, M.J., Cambria, R.P., Kaufman, J.A., Magnetic resonance angiography in the preoperative evaluation of abdominal aortic aneurysms (1995) J Vasc Surg, 21, pp. 891-898. , discussion 899Van Bellen B. Diagnóstico por imagem do aneurisma da aorta abdominal. In: Bonamigo TP, Von Ristow A. Aneurismas. Rio de Janeiro: Dilivros2000. pRacy, D.J., Angiorressonância magnética de artérias periféricas (2002) Doenças vasculares periféricas, 1, pp. 441-453. , Maffei FHA, Lástória S, Yoshida WB, Rollo HA, Rio de Janeiro: Medsis;Faria, R.C.S., Tomografia computadorizada espiral nas patologias vasculares periféricas (2002) Doenças vasculares periféricas, 1, pp. 398-440. , Maffei FHA, Lástória S, Yoshida WB, Rollo HA, Rio de Janeiro: Medsis;Wassef, M., Baxter, B.T., Chisholm, R.L., Pathogenesis of abdominal aortic aneurysms: A multidisciplinary research program supported by the National Heart, Lung and Blood Institute (2001) J Vasc Surg, 34, pp. 730-738Hollier, L.H., Plate, G., O'Brien, P.C., Late survival after abdominal aortic aneurysm repair: Influence of coronary artery disease (1984) J Vasc Surg, 1, pp. 290-299Hertzer, N.R., Clinical experience with preoperative coronary angiography (1985) J Vasc Surg, 2, pp. 510-514Tilson, D., Status of research on abdominal aortic aneurysm disease (1989) J Vasc Surg, 9, pp. 367-369Johnston, K.W., Multicenter prospective study of nonruptured abdominal aortic aneurysm. Part II. Variables predicting morbidity and mortality (1989) J Vasc Surg, 9, pp. 437-447Beiguelman, B., Curso prático de bioestatística (1996) Ribeirão Preto: Rev Bras Gen, , 4 a edWilmink, T.B., Quick, C.R., Day, N.E., The association between cigarette smoking and abdominal aortic aneurysm (1999) J Vasc Surg, 30, pp. 1099-1105Heather, B.P., Poskitt, K.R., Earnshaw, J.J., Whyman, M., Shaw, E., Population screening reduces mortality rate aortic aneurysm in men (2000) Br J Surg, 87, pp. 750-753Scott, R.A., Vardulaki, K.A., Walker, N.M., Day, N.E., Duffy, S.W., Ashton, H.A., The long-term benefits of a single scan for abdominal aortic aneurysm (AAA) at age 65 (2001) Eur J Vasc Endovasc Surg, 21, pp. 535-540Johnston, K.W., Rutherford, R.B., Tilson, M.D., Shah, D.M., Hollier, L., Stanley, J.C., Subcommittee on reporting standards for arterial aneurysms. Suggested standards for reporting on arterial aneurysms (1991) J Vasc Surg, 13, pp. 452-458Brown, P.M., Pattenden, R., Gutelius, J.R., The selective management of small abdominal aortic aneurysms: The Kingston study (1992) J Vasc Surg, 15, pp. 21-25. , discussion 25-7Katz, D.J., Stanley, J.C., Zelenock, G.B., Operative mortality rates for intact and ruptured abdominal aortic aneurysms in Michigan: An eleven-year statewide experience (1994) J Vasc Surg, 19, pp. 804-815. , discussion 816-7Cronenwett, J.L., Johnston, K.W., The United Kingdom Small Aneurysm Trial: Implications for surgical treatment of abdominal aortic aneurysms (1999) J Vasc Surg, 29, pp. 191-194Darling, R.C., Messina, C.R., Brewster, D.C., Ottinger, L.W., Autopsy study of unoperated abdominal aortic aneurysm. The case for early resection (1977) Circulation, 56 (3 SUPPL.), pp. II161-II164Sterpetti, A.V., Cavallaro, A., Cavallari, N., Factors influencing the rupture of abdominal aortic aneurysms (1991) Surg Gynecol Obstet, 173, pp. 175-178Bengtsson, H., Bergqvist, D., Ruptured abdominal aortic aneurysm: A population-based study (1993) J Vasc Surg, 18, pp. 74-80Silva, E.S., Dói, A., Hanaoka, B.Y., Takeda, F.R., Ikeda, M.H., Prevalência de aneurismas e outras anormalidades do diâmetro da aorta infra-renal detectadas em necropsia (2002) J Vasc Bras, 1, pp. 89-96Cronenwett, J.L., Sargent, S.K., Wall, M.H., Variables that affect the expansion rate and outcome of small abdominal aortic aneurysms (1990) J Vasc Surg, 11, pp. 260-268. , discussion 268-9Brown, P.M., Pattenden, R., Vernooy, C., Zelt, D.T., Gutelius, J.R., Selective management of abdominal aortic aneurysms in a prospective measurement program (1996) J Vasc Surg, 23, pp. 213-220. , discussion 221-2Irvine, C.D., Shaw, E., Poskitt, K.R., Whyman, M.R., Earnshaw, J.J., Heather, B.P., A comparison of the mortality rate after elective repair of aortic aneurysms detected either by screening or incidentally (2000) Eur J Vasc Endovasc Surg, 20, pp. 374-378Hallin, A., Bergqvist, D., Holmberg, L., Literature review of surgical management of abdominal aortic aneurysm (2001) Eur J Vasc Endovasc Surg, 22, pp. 197-204Scott, R.A.P., Ashton, H.A., Sutton, G.L.J., Ultrasound screening of a general practice for abdominal aortic aneurysm (1986) Br J Surg, 73, p. 318O'Kelly, T.J., Heather, B.P., General practice-based population screening for abdominal aortic aneurysms: A pilot study (1989) Br J Surg, 76, pp. 479-480Scott, R.A., Ashton, H.A., Kay, D.N., Abdominal aortic aneurysm 4237 screened patients: Prevalence, development and management over 6 years (1991) Br J Surg, 78, pp. 1122-1125Lucarotti, M.E., Shaw, E., Heather, B.P., Distribution of aortic diameter in a screened male population (1992) Br J Surg, 79, pp. 641-642Bonamigo TP, Araújo FL, Siqueira I, Becker M. Epidemiologia dos aneurismas da aorta abdominal. In: Bonamigo TP, Von Ristow A. Aneurismas. Rio de Janeiro: Di livros2000. p. 39-45Boll, A.P., Verbeek, A.L., van de Lisdonk, E.H., van der Vliet, J.A., High prevalence of abdominal aortic aneurysm in a primary care screening programme (1998) Br J Surg, 85, pp. 1090-1094Scott, R.A., Tisi, P.V., Ashton, H.A., Allen, D.R., Abdominal aortic aneurysm rupture rates: A 7-year follow-up of the entire abdominal aortic aneurysm population detected by screening (1998) J Vasc Surg, 28, pp. 124-128Vardulaki, K.A., Walker, N.M., Day, N.E., Duffy, S.W., Ashton, H.A., Scott, R.A., Quantifying the risks of hypertension, age, sex and smoking in patients with abdominal aortic aneurysm (2000) Br J Surg, 87, pp. 195-200World Health Organization. Health of elderly. Geneva: WHO1989. p. 7-9. World Health Organization technical report series 779Wilmink, A.B., Quick, C.R., Epidemiology and potential for prevention of aortic aneurysm (1998) Br J Surg, 85, pp. 155-162World Health Organization. WHO expert committee on diabetis mellitus. Geneva: WHO1980. p. 7-12. World Health Organization technical report series 646Rosemberg, J., Tabagismo: Panorama global (2001) Jovem Medico, 6, pp. 14-1

    Ki-1/57 And Cgi-55 Ectopic Expression Impact Cellular Pathways Involved In Proliferation And Stress Response Regulation

    No full text
    Ki-1/57 (HABP4) and CGI-55 (SERBP1) are regulatory proteins and paralogs with 40.7% amino acid sequence identity and 67.4% similarity. Functionally, they have been implicated in the regulation of gene expression on both the transcriptional and mRNA metabolism levels. A link with tumorigenesis is suggested, since both paralogs show altered expression levels in tumor cells and the Ki-1/57 gene is found in a region of chromosome 9q that represents a haplotype for familiar colon cancer. However, the target genes regulated by Ki-1/57 and CGI-55 are unknown. Here, we analyzed the alterations of the global transcriptome profile after Ki-1/57 or CGI-55 overexpression in HEK293T cells by DNA microchip technology. We were able to identify 363 or 190 down-regulated and 50 or 27 up-regulated genes for Ki-1/57 and CGI-55, respectively, of which 20 were shared between both proteins. Expression levels of selected genes were confirmed by qRT-PCR both after protein overexpression and siRNA knockdown. The majority of the genes with altered expression were associated to proliferation, apoptosis and cell cycle control processes, prompting us to further explore these contexts experimentally. We observed that overexpression of Ki-1/57 or CGI-55 results in reduced cell proliferation, mainly due to a G1 phase arrest, whereas siRNA knockdown of CGI-55 caused an increase in proliferation. In the case of Ki-1/57 overexpression, we found protection from apoptosis after treatment with the ER-stress inducer thapsigargin. Together, our data give important new insights that may help to explain these proteins putative involvement in tumorigenic events.18431229442956Kobarg, J., Schnittger, S., Fonatsch, C., Lemke, H., Bowen, M.A., Buck, F., Hansen, H.P., Characterization, mapping and partial cDNA sequence of the 57-kD intracellular Ki-1 antigen (1997) Exp. Clin. Immunogenet., 14, pp. 273-280Serce, N.B., Boesl, A., Klaman, I., von Serényi, S., Noetzel, E., Press, M.F., Dimmler, A., Dahl, E., Overexpression of SERBP1 (plasminogen activator inhibitor 1 RNA binding protein) in human breast cancer is correlated with favourable prognosis (2012) BMC Cancer, 12, p. 597Heaton, J.H., Dlakic, W.M., Dlakic, M., Gelehrter, T.D., Identification and cDNA cloning of a novel RNA-binding protein that interacts with the cyclic nucleotide-responsive sequence in the type-1 plasminogen activator inhibitor mRNA (2001) J. Biol. Chem., 276, pp. 3341-3347Lemos, T.A., Passos, D.O., Nery, F.C., Kobarg, J., Characterization of a new family of proteins that interact with the C-terminal region of the chromatin-remodeling factor CHD-3 (2003) FEBS Lett., 533, pp. 14-20Kobarg, C.B., Kobarg, J., Crosara-Alberto, D.P., Theizen, T.H., Franchini, K.G., MEF2C DNA-binding activity is inhibited through its interaction with the regulatory protein Ki-1/57 (2005) FEBS Lett., 579, pp. 2615-2622Nery, F.C., Rui, E., Kuniyoshi, T.M., Kobarg, J., Evidence for the interaction of the regulatory protein Ki-1/57 with p53 and its interacting proteins (2006) Biochem. Biophys. Res. Commun., 341, pp. 847-855Bressan, G.C., Quaresma, A.J.C., Moraes, E.C., Manfiolli, A.O., Passos, D.O., Gomes, M.D., Kobarg, J., Functional association of human Ki-1/57 with pre-mRNA splicing events (2009) FEBS J., 276, pp. 3770-3783Gonçalves, K.D.A., Bressan, G.C., Saito, A., Morello, L.G., Zanchin, N.I.T., Kobarg, J., Evidence for the association of the human regulatory protein Ki-1/57 with the translational machinery (2011) FEBS Lett., 585, pp. 2556-2560Nery, F.C., Passos, D.O., Garcia, V.S., Kobarg, J., Ki-1/57 interacts with RACK1 and is a substrate for the phosphorylation by phorbol 12-myristate 13-acetate-activated protein kinase C (2004) J. Biol. Chem., 279, pp. 11444-11455Passos, D.O., Bressan, G.C., Nery, F.C., Kobarg, J., Ki-1/57 interacts with PRMT1 and is a substrate for arginine methylation (2006) FEBS J., 273, pp. 3946-3961Lemos, T.A., Kobarg, J., CGI-55 interacts with nuclear proteins and co-localizes to p80-coilin positive-coiled bodies in the nucleus (2006) Cell Biochem. Biophys., 44, pp. 463-474Bressan, G.C., Kobarg, J., From protein interaction profile to functional assignment: the human protein Ki-1/57 is associated with pre-mRNA splicing events (2010) RNA Biol., 7, pp. 268-271Gray-McGuire, C., Guda, K., Adrianto, I., Lin, C.P., Natale, L., Potter, J.D., Newcomb, P., Buchanan, D., Confirmation of linkage to and localization of familial colon cancer risk haplotype on chromosome 9q22 (2010) Cancer Res., 70, pp. 5409-5418Koensgen, D., Mustea, A., Klaman, I., Sun, P., Zafrakas, M., Lichtenegger, W., Denkert, C., Sehouli, J., Expression analysis and RNA localization of PAI-RBP1 (SERBP1) in epithelial ovarian cancer: association with tumor progression (2007) Gynecol. Oncol., 107, pp. 266-273Sun, W., Guo, C., Meng, X., Yu, Y., Jin, Y., Tong, D., Geng, J., Bai, J., Differential expression of PAI-RBP1, C1orf142, and COTL1 in non-small cell lung cancer cell lines with different tumor metastatic potential (2012) J. Investig. Med., 60, pp. 689-694Morrissey, C., True, L.D., Roudier, M.P., Coleman, I.M., Hawley, S., Nelson, P.S., Coleman, R., Vessella, R.L., Differential expression of angiogenesis associated genes in prostate cancer bone, liver and lymph node metastases (2008) Clin. Exp. Metastasis, 25, pp. 377-388Nilsson, J., Sengupta, J., Frank, J., Nissen, P., Regulation of eukaryotic translation by the RACK1 protein: a platform for signalling molecules on the ribosome (2004) EMBO Rep., 5, pp. 1137-1141Xia, Z., Zheng, X., Zheng, H., Liu, X., Yang, Z., Wang, X., Cold-inducible RNA-binding protein (CIRP) regulates target mRNA stabilization in the mouse testis (2012) FEBS Lett., 586, pp. 3299-3308Khandjian, E.W., Huot, M.-E., Tremblay, S., Davidovic, L., Mazroui, R., Bardoni, B., Biochemical evidence for the association of fragile X mental retardation protein with brain polyribosomal ribonucleoparticles (2004) Proc. Natl. Acad. Sci. U. S. A., 101, pp. 13357-13362Braunschweig, U., Gueroussov, S., Plocik, A.M., Graveley, B.R., Blencowe, B.J., Dynamic integration of splicing within gene regulatory pathways (2013) Cell, 152, pp. 1252-1269Bressan, G.C., Silva, C., Borges, C., Passos, D.O., Ramos, C.H.I., Torriani, I.L., Ma, G., Human Regulatory Protein Ki-1/57 Has Characteristics of an Intrinstrinsically Unstructured Protein (2008) J. Proteome Res., 7, pp. 4465-4474Dyson, H.J., Wright, P.E., Intrinsically unstructured proteins and their functions (2005) Nat. Rev. Mol. Cell Biol., 6, pp. 197-208Gsponer, J., Futschik, M., Teichmann, S., Babu, M., Tight regulation of unstructured proteins: from transcript synthesis to protein degradation (2008) Science, 322, pp. 1365-1368Rohde, D., Hansen, H., Hafner, M., Lange, H., Mielke, V., Hansmann, M.L., Lemke, H., Cellular localizations and processing of the two molecular forms of the Hodgkin-associated Ki-1 (CD30) antigen. The protein kinase Ki-1/57 occurs in the nucleus (1992) Am. J. Pathol., 140, pp. 473-482Goodier, J.L., Zhang, L., Vetter, M.R., Kazazian, H.H., LINE-1 ORF1 protein localizes in stress granules with other RNA-binding proteins, including components of RNA interference RNA-induced silencing complex (2007) Mol. Cell. Biol., 27, pp. 6469-6483Lee, Y.-J., Wei, H.-M., Chen, L.-Y., Li, C., Localization of SERBP1 in stress granules and nucleoli (2014) FEBS J., 281, pp. 352-364Decker, C.J., Parker, R., P-bodies and stress granules: possible roles in the control of translation and mRNA degradation (2012) Cold Spring Harb. Perspect. Biol., 4, p. a012286Anderson, P., Kedersha, N., RNA granules: post-transcriptional and epigenetic modulators of gene expression (2009) Nat. Rev. Mol. Cell Biol., 10, pp. 430-436Bressan, G.C., Moraes, E.C., Manfiolli, A.O., Kuniyoshi, T.M., Passos, D.O., Gomes, M.D., Kobarg, J., Arginine methylation analysis of the splicing-associated SR protein SFRS9/SRP30C (2009) Cell. Mol. Biol. Lett., 14, pp. 657-669Carazzolle, M.F., de Carvalho, L.M., Slepicka, H.H., Vidal, R.O., Pereira, G.A.G., Kobarg, J., Meirelles, G.V., IIS-Integrated Interactome System: a web-based platform for the annotation, analysis and visualization of protein-metabolite-gene-drug interactions by integrating a variety of data sources and tools (2014) PLoS One, 9, p. e100385Chen, E.Y., Tan, C.M., Kou, Y., Duan, Q., Wang, Z., Meirelles, G.V., Clark, N.R., Ma'ayan, A., Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool (2013) BMC Bioinforma., 14, p. 128Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Ideker, T., Cytoscape: a software environment for integrated models of biomolecular interaction (2003) Networks, pp. 2498-2504Huelsenbeck, J.P., Ronquist, F., Nielsen, R., Bollback, J.P., Bayesian inference of phylogeny and its impact on evolutionary biology (2001) Science, 294, pp. 2310-2314Katoh, K., Misawa, K., Kuma, K., Miyata, T., MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform (2002) Nucleic Acids Res., 30, pp. 3059-3066Castresana, J., Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis (2000) Mol. Biol. Evol., 17, pp. 540-552Jones, D.T., Taylor, W.R., Thornton, J.M., The rapid generation of mutation data matrices from protein sequences (1992) Comput. Appl. Biosci., 8, pp. 275-282Darriba, D., Taboada, G.L., Doallo, R., Posada, D., ProtTest 3: fast selection of best-fit models of protein evolution (2011) Bioinformatics, 27, pp. 1164-1165Huang, L., Grammatikakis, N., Yoneda, M., Banerjee, S.D., Toole, B.P., Molecular characterization of a novel intracellular hyaluronan-binding protein (2000) J. Biol. Chem., 275, pp. 29829-29839Ivanov, K.I., Tselykh, T.V., Heino, T.I., Mäkinen, K., The RISC component VIG is a target for dsRNA-independent protein kinase activity in Drosophila S2 cells (2005) J. RNAi Gene Silenc., 1, pp. 12-20Wingender, E., Schoeps, T., Dönitz, J., TFClass: an expandable hierarchical classification of human transcription factors (2013) Nucleic Acids Res., 41, pp. D165-D170Ohtomo, N., Tomiya, T., Tanoue, Y., Inoue, Y., Nishikawa, T., Ikeda, H., Seyama, Y., Fujiwara, K., Expression of α-taxilin in hepatocellular carcinoma correlates with growth activity and malignant potential of the tumor (2010) Int. J. Oncol., 37, pp. 1417-1423Mashidori, T., Shirataki, H., Kamai, T., Nakamura, F., Yoshida, K.-I., Increased alpha-taxilin protein expression is associated with the metastatic and invasive potential of renal cell cancer (2011) Biomed. Res., 32, pp. 103-110Pan, Z., Erkan, M., Streit, S., Friess, H., Kleeff, J., Silencing of GRP94 expression promotes apoptosis in pancreatic (2009) Cancer Cells, pp. 823-828Yang, X., Khosravi-Far, R., Chang, H.Y., Baltimore, D., Daxx, a novel fas-binding protein that activates JNK and apoptosis (1997) Cell, 89, pp. 1067-1076Lin, L., Ozaki, T., Takada, Y., Kageyama, H., Nakamura, Y., Hata, A., Zhang, J.-H., Koseki, H., Topors, a p53 and topoisomerase I-binding RING finger protein, is a coactivator of p53 in growth suppression induced by DNA damage (2005) Oncogene, 24, pp. 3385-3396Zhao, F., Vilardi, A., Neely, R.J., Choi, J.K., Promotion of cell cycle progression by basic helix-loop-helix E2A (2001) Mol. Cell. Biol., 21, pp. 6346-6357Davidson, G., Shen, J., Huang, Y.-L., Su, Y., Karaulanov, E., Bartscherer, K., Hassler, C., Niehrs, C., Cell cycle control of wnt receptor activation (2009) Dev. Cell, 17, pp. 788-799Hashimoto, O., Yamato, K., Koseki, T., Ohguchi, M., Ishisaki, A., Shoji, H., Nakamura, T., Nishihara, T., The role of activin type I receptors in activin A-induced growth arrest and apoptosis in mouse B-cell hybridoma cells (1998) Cell. Signal., 10, pp. 743-749Wang, X., McGowan, C.H., Zhao, M., He, L., Downey, J.S., Fearns, C., Wang, Y., Han, J., Involvement of the MKK6-p38gamma cascade in gamma-radiation-induced cell cycle arrest (2000) Mol. Cell. Biol., 20, pp. 4543-4552Liang, Y., Yu, W., Li, Y., Yu, L., Zhang, Q., Wang, F., Yang, Z., Zhu, X., Nudel modulates kinetochore association and function of cytoplasmic dynein in M phase (2007) Mol. Biol. Cell, 18, pp. 2656-2666Sütterlin, C., Polishchuk, R., Pecot, M., Malhotra, V., The golgi-associated protein GRASP65 regulates spindle dynamics and is essential for cell division (2005) Mol. Biol. Cell, 16, pp. 3211-3222Hake, S.B., Garcia, B.A., Duncan, E.M., Kauer, M., Dellaire, G., Shabanowitz, J., Bazett-Jones, D.P., Hunt, D.F., Expression patterns and post-translational modifications associated with mammalian histone H3 variants (2006) J. Biol. Chem., 281, pp. 559-568Park, C.-H., Kim, K.-T., Apoptotic phosphorylation of histone H3 on Ser-10 by protein kinase Cδ (2012) PLoS One, 7, p. e44307Lee, Y.Y., Yu, Y.B., Gunawardena, H.P., Xie, L., Chen, X., BCLAF1 is a radiation-induced H2AX-interacting partner involved in γH2AX-mediated regulation of apoptosis and DNA repair (2012) Cell Death Dis., 3, p. e359Cho, S., Park, J.S., Kang, Y.-K., Dual functions of histone-lysine N-methyltransferase Setdb1 protein at promyelocytic leukemia-nuclear body (PML-NB): maintaining PML-NB structure and regulating the expression of its associated genes (2011) J. Biol. Chem., 286, pp. 41115-41124So, C.H., Michal, A., Komolov, K.E., Luo, J., Benovic, J.L., G protein-coupled receptor kinase 2 (GRK2) is localized to centrosomes and mediates epidermal growth factor-promoted centrosomal separation (2013) Mol. Biol. Cell, 24, pp. 2795-2806Chen, X., Zhu, H., Yuan, M., Fu, J., Zhou, Y., Ma, L., G-protein-coupled receptor kinase 5 phosphorylates p53 and inhibits DNA damage-induced apoptosis (2010) J. Biol. Chem., 285, pp. 12823-12830Bando, Y., Katayama, T., Aleshin, A.N., Manabe, T., Tohyama, M., GRP94 reduces cell death in SH-SY5Y cells perturbated calcium homeostasis (2004) Apoptosis, 9, pp. 501-508Agarwal, N., Tochigi, Y., Adhikari, A.S., Cui, S., Cui, Y., Iwakuma, T., MTBP plays a crucial role in mitotic progression and chromosome segregation (2011) Cell Death Differ., 18, pp. 1208-1219Odvody, J., Vincent, T., Arrate, M.P., Grieb, B., Wang, S., Garriga, J., Lozano, G., Eischen, C.M., A deficiency in Mdm2 binding protein inhibits Myc-induced B-cell proliferation and lymphomagenesis (2010) Oncogene, 29, pp. 3287-3296Brady, M., Vlatkovic, N., Boyd, M.T., Regulation of p53 and MDM2 activity by MTBP (2005) Mol. Cell. Biol., 25, pp. 545-553Lee, Y.-J., Hsieh, W.-Y., Chen, L.-Y., Li, C., Protein arginine methylation of SERBP1 by protein arginine methyltransferase 1 affects cytoplasmic/nuclear distribution (2012) J. Cell. Biochem., 113, pp. 2721-2728Mao, Y.S., Zhang, B., Spector, D.L., Biogenesis and function of nuclear bodies (2011) Trends Genet., 27, pp. 295-306Salomoni, P., The PML-interacting protein DAXX: histone loading gets into the picture (2013) Front. Oncol., 3, p. 152Peluso, J.J., Yuan, A., Liu, X., Lodde, V., Plasminogen activator inhibitor 1 RNA-binding protein interacts with progesterone receptor membrane component 1 to regulate progesterone's ability to maintain the viability of spontaneously immortalized granulosa cells and rat granulosa cells (2013) Biol. Reprod., 88, p. 20Lallemand-Breitenbach, V., de Thé, H., PML nuclear bodies (2010) Cold Spring Harb. Perspect. Biol., 2, p. a000661Golebiowski, F., Matic, I., Tatham, M.H., Cole, C., Yin, Y., Nakamura, A., Cox, J., Hay, R.T., System-wide changes to SUMO modifications in response to heat shock (2009) Sci. Signal., 2, p. ra24Wang, J., Shiels, C., Sasieni, P., Wu, P.J., Islam, S.A., Freemont, P.S., Sheer, D., Promyelocytic leukemia nuclear bodies associate with transcriptionally active genomic regions (2004) J. Cell Biol., 164, pp. 515-526Dellaire, G., Bazett-Jones, D.P., PML nuclear bodies: dynamic sensors of DNA damage and cellular stress (2004) Bioessays, 26, pp. 963-977Sudharsan, R., Azuma, Y., The SUMO ligase PIAS1 regulates UV-induced apoptosis by recruiting Daxx to SUMOylated foci (2012) J. Cell Sci., 125, pp. 5819-582

    Human Nek7-interactor Rgs2 Is Required For Mitotic Spindle Organization

    No full text
    The mitotic spindle apparatus is composed of microtubule (MT) networks attached to kinetochores organized from 2 centrosomes (a.k.a. spindle poles). In addition to this central spindle apparatus, astral MTs assemble at the mitotic spindle pole and attach to the cell cortex to ensure appropriate spindle orientation. We propose that cell cycle-related kinase, Nek7, and its novel interacting protein RGS2, are involved in mitosis regulation and spindle formation. We found that RGS2 localizes to the mitotic spindle in a Nek7-dependent manner, and along with Nek7 contributes to spindle morphology and mitotic spindle pole integrity. RGS2-depletion leads to a mitotic-delay and severe defects in the chromosomes alignment and congression. Importantly, RGS2 or Nek7 depletion or even overexpression of wild-type or kinase-dead Nek7, reduced γ-tubulin from the mitotic spindle poles. In addition to causing a mitotic delay, RGS2 depletion induced mitotic spindle misorientation coinciding with astral MT-reduction. We propose that these phenotypes directly contribute to a failure in mitotic spindle alignment to the substratum. In conclusion, we suggest a molecular mechanism whereupon Nek7 and RGS2 may act cooperatively to ensure proper mitotic spindle organization.144656667Goshima, G., Wollman, R., Goodwin, S.S., Zhang, N., Scholey, J.M., Vale, R.D., Stuurman, N., Genes required for mitotic spindle assembly in Drosophila S2 cells (2007) Science, 5823, pp. 417-421. , http://dx.doi.org/10.1126/science.1141314Uehara, R., Nozawa, R.S., Tomioka, A., Petry, S., Vale, R.D., Obuse, C., Goshima, G., The augmin complex plays a critical role in spindle microtubule generation for mitotic progression and cytokinesis in human cells (2009) Proc Natl Acad Sci USA, 106, pp. 6998-7003. , http://dx.doi.org/10.1073/pnas.0901587106, PMID:19369198Dumont, S., Mitchison, T.J., Force and length in the mitotic spindle (2009) Curr Biol, 17, pp. R749-R761. , http://dx.doi.org/10.1016/j.cub.2009.07.028Hayward, D., Metz, J., Pellacani, C., Wakefield, J.G., Synergy between multiple microtubule-generating pathways confers robustness to centrosome-driven mitotic spindle formation (2014) Dev Cell, 1, pp. 81-93. , http://dx.doi.org/10.1016/j.devcel.2013.12.001Luders, J., Stearns, T., Microtubule-organizing centres: A re-evaluation (2007) Nat Rev Mol Cell Biol, 8, pp. 161-167. , http://dx.doi.org/10.1038/nrm2100, PMID:17245416Willard, F.S., Kimple, R.J., Siderovski, D.P., Return of the GDI: The GoLoco motif in cell division (2004) Annu Rev Biochem, 73, pp. 925-951. , http://dx.doi.org/10.1146/annurev.biochem.73.011303.073756, PMID:15189163Kotak, S., Gönczy, P., Mechanisms of spindle positioning: Cortical force generators in the limelight (2013) Curr Opin Cell Biol, 6, pp. 741-748. , http://dx.doi.org/10.1016/j.ceb.2013.07.008Zheng, Z., Wan, Q., Liu, J., Zhu, H., Chu, X., Du, Q., Evidence for dynein and astral microtubule-mediated cortical release and transport of Gai/LGN/NuMA complex in mitotic cells (2013) Mol Biol Cell, 7, pp. 901-913. , http://dx.doi.org/10.1091/mbc.E12-06-0458Musacchio, A., Salmon, E.D., The spindle-assembly checkpoint in space and time (2007) Nat Rev Mol Cell Biol, 8, pp. 379-393. , http://dx.doi.org/10.1038/nrm2163, PMID:17426725Noatynska, A., Gotta, M., Meraldi, P., Mitotic spindle (DIS) orientation and DISease: Cause or consequence? (2012) J Cell Biol, 7, pp. 1025-1035. , http://dx.doi.org/10.1083/jcb.201209015O'Connell, M.J., Krien, M.J., Hunter, T., Never say never. The NIMA-related protein kinases in mitotic control (2003) Trends Cell Biol, 5, pp. 221-228. , http://dx.doi.org/10.1016/S0962-8924(03)00056-4O'Regan, L., Blot, J., Fry, A.M., Mitotic regulation by NIMA-related kinases (2007) Cell Div, 29, pp. 2-25Fry, A.M., O'Regan, L., Sabir, S.R., Bayliss, R., Cell cycle regulation by the NEK family of protein kinases (2012) J Cell Sci, 125, pp. 4423-4433. , http://dx.doi.org/10.1242/jcs.111195, PMID:23132929Meirelles, G.V., Perez, A.M., De Souza, E.E., Basei, F.L., Papa, P.F., Hanchuk, T.D.M., Cardoso, V.B., Kobarg, J., "Stop Ne (c)king around:" How systems biology can help to characterize the functions of NEK family kinases from cell cycle regulation to DNA damage response (2014) World J Biol Chem, 5 (2), pp. 141-160Roig, J., Groen, A., Caldwell, J., Avruch, J., Active Nercc1 protein kinase concentrates at centrosomes early in mitosis and is necessary for proper spindle assembly (2005) Mol Biol Cell, 16, pp. 4827-4840. , http://dx.doi.org/10.1091/mbc.E05-04-0315, PMID:16079175Yissachar, N., Salem, H., Tennenbaum, T., Motro, B., Nek7 kinase is enriched at the centrosome, and is required for proper spindle assembly and mitotic progression (2006) FEBS Lett, 27, pp. 6489-6495. , http://dx.doi.org/10.1016/j.febslet.2006.10.069Kim, S., Lee, K., Rhee, K., NEK7 is a centrosomal kinase critical for microtubule nucleation (2007) Biochem Biophys Res Commun, 1, pp. 56-62. , http://dx.doi.org/10.1016/j.bbrc.2007.05.206O'Regan, L., Fry, A.M., The Nek6 and Nek7 protein kinases are required for robust mitotic spindle formation and cytokinesis (2009) Mol Cell Biol, 14, pp. 3975-3990. , http://dx.doi.org/10.1128/MCB.01867-08Belham, C., Roig, J., Caldwell, J.A., Aoyama, Y., Kemp, B.E., Comb, M., Avruch, J.A., Mitotic cascade of NIMA family kinases. Nercc1/NEK9 activates the NEK6 and NEK7 kinases (2003) J Biol Chem, 37, pp. 34897-34909. , http://dx.doi.org/10.1074/jbc.M303663200Richards, M.W., O'Regan, L., Mas-Droux, C., Blot, J.M., Cheung, J., Hoelder, S., Fry, A.M., Bayliss, R., Anautoinhibitory tyrosine motif in the cell-cycle-regulated NEK7 kinase is released through binding of NEK9 (2009) Mol Cell, 4, pp. 560-570. , http://dx.doi.org/10.1016/j.molcel.2009.09.038Quarmby, L.M., Mahjoub, M.R., Caught Nek-ing: Cilia and centrioles (2005) J Cell Sci, 118, pp. 5161-5169. , http://dx.doi.org/10.1242/jcs.02681, PMID:16280549Kim, S., Rhee, K., NEK7 is essential for centriole duplication and centrosomal accumulation of pericentriolar material proteins in interphase cells (2011) J Cell Sci, 124, pp. 3760-3770. , http://dx.doi.org/10.1242/jcs.078089, PMID:22100915Salem, H., Rachmin, I., Yissachar, N., Cohen, S., Amiel, A., Haffner, R., Lavi, L., Motro, B., Nek7 kinase targeting leads to early mortality, cytokinesis disturbance and polyploidy (2010) Oncogene, 28, pp. 4046-4057. , http://dx.doi.org/10.1038/onc.2010.162De Souza, E.E., Meirelles, G.V., Godoy, B.B., Perez, A.M., Smetana, J.H., Doxsey, S.J., McComb, M.E., Kobarg, J., Characterization of the human NEK7 interactome suggests catalytic and regulatory properties distinct from those of NEK6 (2014) J Proteome Res, 13 (9), pp. 4074-4090. , http://dx.doi.org/10.1021/pr500437x, PMID:25093993Abramow-NewerlyM, Roy, A.A., Nunn, C., Chidiac, P., RGS proteins have a signalling complex: Interactions between RGS proteins and GPCRs, effectors, and auxiliary proteins (2006) Cell Signal, 18, pp. 579-591. , http://dx.doi.org/10.1016/j.cellsig.2005.08.010, PMID:16226429Bastin, G., Heximer, S.P., Rab family proteins regulate the endosomal trafficking and function of RGS4 (2013) J Biol Chem., 30, pp. 21836-21849. , http://dx.doi.org/10.1074/jbc.M113.466888Siderovski, D.P., Hessel, A., Chung, S., Mak, T.W., Tyers, M., A new family of regulators of G-protein-coupled receptors? (1996) Curr Biol, 2, pp. 211-212. , http://dx.doi.org/10.1016/S0960-9822(02)00454-2Keys, J.R., Greene, E.A., Koch, W.J., Eckhart, A.D., Gq-coupled receptor agonists mediate cardiac hypertrophy via the vasculature (2002) Hypertension, 40, pp. 660-666. , http://dx.doi.org/10.1161/01.HYP.0000035397.73223.CE, PMID:12411459Wilkie, T.M., Kinch, L., New roles for G a and RGS proteins: Communication continues despite pulling sisters apart (2005) Curr Biol, 15, pp. 843-854. , http://dx.doi.org/10.1016/j.cub.2005.10.008Hewavitharana, T., Wedegaertner, P.B., Non-canonical signaling and localizations of heterotrimeric G proteins (2012) Cell Signal, 1, pp. 25-34. , http://dx.doi.org/10.1016/j.cellsig.2011.08.014Lampson, M.A., Cheeseman, I.M., Sensing centromere tension: Aurora B and the regulation of kinetochore function (2011) Trends Cell Biol, 3, pp. 133-140. , http://dx.doi.org/10.1016/j.tcb.2010.10.007Hochegger, H., H'Egarat, N., Pereira-Leal, J.B., Aurora at the pole and equator: Overlapping functions of Aurora kinases in the mitotic spindle (2013) Open Biol, 3, p. 120185. , http://dx.doi.org/10.1098/rsob.120185, PMID:23516109Hehnly, H., Doxsey, S., Rab11 endosomes contribute to mitotic spindle organization and orientation (2014) Dev Cell, 28, pp. 497-507. , http://dx.doi.org/10.1016/j.devcel.2014.01.014, PMID:24561039Cowley, D.O., Rivera-P'Erez, J.A., Schliekelman, M., He, Y.J., Oliver, T.G., Lu, L., O'Quinn, R., Van Dyke, T., Aurora-A kinase is essential for bipolar spindle formation and early development (2009) Mol Cell Biol, 4, pp. 1059-1071. , http://dx.doi.org/10.1128/MCB.01062-08Nagai, T., Ikeda, M., Chiba, S., Kanno, S., Mizuno, K., Furry promotes acetylation of microtubules in the mitotic spindle by inhibition of SIRT2 tubulin deacetylase (2013) J Cell Sci, 19, pp. 4369-4380. , http://dx.doi.org/10.1242/jcs.127209Zimmerman, W.C., Sillibourne, J., Rosa, J., Doxsey, S.J., Mitosis-specific anchoring of gamma tubulin complexes by pericentrin controls spindle organization and mitotic entry (2004) Mol Biol Cell, 8, pp. 3642-3657. , http://dx.doi.org/10.1091/mbc.E03-11-0796Bornens, M., The centrosome in cells and organisms (2012) Science, 335, pp. 422-426. , http://dx.doi.org/10.1126/science.1209037, PMID:22282802Bouissou, A., V'Erollet, C., De Forges, H., Haren, L., Bellä Iche, Y., Perez, F., Merdes, A., Raynaud-Messina, B., γ-Tubulin ring complexes and EB1 play antagonistic roles in microtubule dynamics and spindle positioning (2014) EMBO J, 2, pp. 114-128. , http://dx.doi.org/10.1002/embj.201385967Laan, L., Pavin, N., Husson, J., Romet-Lemonne, G., Van Duijn, M., Ĺopez, M.P., Vale, R.D., Dogterom, M., Cortical dynein controls microtubule dynamics to generate pulling forces that position microtubule asters (2012) Cell, 3, pp. 502-514. , http://dx.doi.org/10.1016/j.cell.2012.01.007Delaval, B., Bright, A., Lawson, N.D., Doxsey, S., The cilia protein IFT88 is required for spindle orientation in mitosis (2011) Nat Cell Biol, 4, pp. 461-468. , http://dx.doi.org/10.1038/ncb2202Lu, M.S., Johnston, C.A., Molecular pathways regulating mitotic spindle orientation in animal cells (2013) Development, 9, pp. 1843-1856. , http://dx.doi.org/10.1242/dev.087627Cohen, S., Aizer, A., Shav-Tal, Y., Yanai, A., Motro, B., Nek7 kinase acceleratesmicrotubule dynamic instability (2013) Biochim Biophys Acta, 1833, pp. 1104-1113. , http://dx.doi.org/10.1016/j.bbamcr.2012.12.021, PMID:23313050Welburn, J.P., Vleugel, M., Liu, D., Yates, J.R., Lampson, M.A., Fukagawa, T., Cheeseman, I.M., Aurora B phosphorylates spatially distinct targets to differentially regulate the kinetochore-microtubule interface (2010) Mol Cell, 38 (3), pp. 383-392. , http://dx.doi.org/10.1016/j.molcel.2010.02.034, PMID:20471944Heo, K., Ha, S.H., Chae, Y.C., Lee, S., Oh, Y.S., Kim, Y.H., Kim, S.H., Ryu, S.H., Suh PG RGS2 promotes formation of neurites by stimulating microtubule polymerization (2006) Cell Signal, 12, pp. 2182-2192. , http://dx.doi.org/10.1016/j.cellsig.2006.05.006Blumer, J.B., Kuriyama, R., Gettys, T.W., Lanier, S.M., The G-protein regulatory (GPR) motif-containing Leu-Gly-Asn-enriched protein (LGN) and Gialpha3 influence cortical positioning of the mitotic spindle poles at metaphase in symmetrically dividing mammalian cells (2006) Eur J Cell Biol, 12, pp. 1233-1240. , http://dx.doi.org/10.1016/j.ejcb.2006.08.002Woodard, G.E., Huang, N.-N., Cho, H., Miki, T., Tall, G.G., Kehrl, J.H., Ric-8A and Gi Alpha recruit LGN, NuMA, and dynein to the cell cortex to help orient the mitotic spindle (2010) Mol Cell Biol, 14, pp. 3519-3530. , http://dx.doi.org/10.1128/MCB.00394-10Upadhya, P., Birkenmeier, E.H., Birkenmeier, C.S., Barker, J.E., Mutations in a NIMA-related kinase gene, Nek1, cause peliotropic effects including a progressive polycystic kidney disease in mice (2000) Proc Natl Acad Sci U S A, 97, pp. 217-221. , http://dx.doi.org/10.1073/pnas.97.1.217, PMID:10618398Zalli, D., Bayliss, R., Fry, A.M., The Nek8 protein kinase, mutated in the human cystic kidney disease nephronophthisis, is both activated and degraded during ciliogenesis (2012) Hum Mol Genet, 5, pp. 1155-1171. , http://dx.doi.org/10.1093/hmg/ddr544Moniz, L., Dutt, P., Haider, N., Stambolic, V., Nek family of kinases in cell cycle, checkpoint control and cancer (2011) Cell Div, 1, p. 18. , http://dx.doi.org/10.1186/1747-1028-6-18Kawamura, E., Fielding, A.B., Kannan, N., Balgi, A., Eaves, C.J., Roberge, M., Dedhar, S., Identification of novel small molecule inhibitors of centrosome clustering in cancer cells (2013) Oncotarget, 4, pp. 1763-1776. , PMID:24091544Sanhaji, M., Ritter, A., Belsham, H.R., Friel, C.T., Roth, S., Louwen, F., Yuan, J., Polo-like kinase 1 regulates the stability of themitotic centromere-associated kinesin inmitosis (2014) Oncotarget, 5, pp. 3130-3144. , PMID:24931513Carazzolle, M.F., De Carvalho, L.M., Slepicka, H.H., Vidal, R.O., Pereira, G.A., Kobarg, J., Meirelles, G.V., IIS - Integrated Interactome System: A web-based platform for the annotation, analysis and visualization of protein-metabolite-gene-drug interactions by integrating a variety of data sources and tools (2014) PLoS One, 9 (6), p. e100385. , http://dx.doi.org/10.1371/journal.pone.0100385Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Ideker, T., Cytoscape: A software environment for integrated models of biomolecular interaction networks (2003) Genome Res, 11, pp. 2498-2504. , http://dx.doi.org/10.1101/gr.1239303Thoma, C.R., Toso, A., Gutbrodt, K.L., Reggi, S.P., Frew, I.J., Schraml, P., Hergovich, A., Krek, W., VHL loss causes spindle misorientation and chromosome instability (2009) Nat Cell Biol, 8, pp. 994-1001. , http://dx.doi.org/10.1038/ncb191

    Characterization Of The Human Nek7 Interactome Suggests Catalytic And Regulatory Properties Distinct From Those Of Nek6

    No full text
    Human NEK7 is a regulator of cell division and plays an important role in growth and survival of mammalian cells. Human NEK6 and NEK7 are closely related, consisting of a conserved C-terminal catalytic domain and a nonconserved and disordered N-terminal regulatory domain, crucial to mediate the interactions with their respective proteins. Here, in order to better understand NEK7 cellular functions, we characterize the NEK7 interactome by two screening approaches: one using a yeast two-hybrid system and the other based on immunoprecipitation followed by mass spectrometry analysis. These approaches led to the identification of 61 NEK7 interactors that contribute to a variety of biological processes, including cell division. Combining additional interaction and phosphorylation assays from yeast two-hybrid screens, we validated CC2D1A, TUBB2B, MNAT1, and NEK9 proteins as potential NEK7 interactors and substrates. Notably, endogenous RGS2, TUBB, MNAT1, NEK9, and PLEKHA8 localized with NEK7 at key sites throughout the cell cycle, especially during mitosis and cytokinesis. Furthermore, we obtained evidence that the closely related kinases NEK6 and NEK7 do not share common interactors, with the exception of NEK9, and display different modes of protein interaction, depending on their N- and C-terminal regions, in distinct fashions. In summary, our work shows for the first time a comprehensive NEK7 interactome that, combined with functional in vitro and in vivo assays, suggests that NEK7 is a multifunctional kinase acting in different cellular processes in concert with cell division signaling and independently of NEK6.13940744090Ma, H.T., Poon, R.Y., How protein kinases co-ordinate mitosis in animal cells (2011) Biochem. J., 435, pp. 17-31Fry, A.M., Meraldi, P., Nigg, E.A., A centrosomal function for the human NEK2 protein kinase, a member of the NIMA family of cell cycle regulators (1998) EMBO J., 17, pp. 470-481Moniz, L., Dutt, P., Haider, N., Stambolic, V., NEK family of kinases in cell cycle, checkpoint control and cancer (2011) Cell Div., 6, p. 18Dodson, C.A., Haq, T., Yeoh, S., Fry, A.M., Bayliss, R., The structural mechanisms that underpin mitotic kinase activation (2013) Biochem. Soc. Trans., 41, pp. 1037-1041Morris, N.R., Mitotic mutants of Aspergillus nidulans (1975) Genet. Res., 26, pp. 237-254Oakley, B.R., Morris, N.R., A mutation in Aspergillus nidulans that blocks the transition from interphase to prophase (1983) J. Cell Biol., 96, pp. 1155-1158Belham, C., Roig, J., Caldwell, J.A., Aoyama, Y., Kemp, B.E., Comb, M., Avruch, J., A mitotic cascade of NIMA family kinases. Nercc1/NEK9 activates the NEK6 and NEK7 kinases (2003) J. Biol. Chem., 278, pp. 34897-34909Li, J.J., Li, S.A., Mitotic kinases: The key to duplication, segregation, and cytokinesis errors, chromosomal instability, and oncogenesis (2006) Pharmacol Ther., 111, pp. 974-984Upadhya, P., Birkenmeier, E.H., Birkenmeier, C.S., Barker, J.E., Mutations in a NIMA-related kinase gene, NEK1, cause pleiotropic effects including a progressive polycystic kidney disease in mice (2000) Proc. Natl. Acad. Sci. U.S.A., 97, pp. 217-221Quarmby, L.M., Mahjoub, M.R., Caught NEK-ing: Cilia and centrioles (2005) J. Cell Sci., 118, pp. 5161-5169Kim, S., Lee, K., Rhee, K., NEK7 is a centrosomal kinase critical for microtubule nucleation (2007) Biochem. Biophys. Res. Commun., 360, pp. 56-62O'Regan, L., Blot, J., Fry, A.M., Mitotic regulation by NIMA-related kinases (2007) Cell Div., 2, p. 25O'Regan, L., Fry, A.M., The NEK6 and NEK7 protein kinases are required for robust mitotic spindle formation and cytokinesis (2009) Mol. Cell. Biol., 29, pp. 3975-3990Yissachar, N., Salem, H., Tennenbaum, T., Motro, B., NEK7 kinase is enriched at the centrosome, and is required for proper spindle assembly and mitotic progression (2006) FEBS Lett., 580, pp. 6489-6495Kim, S., Kim, S., Rhee, K., NEK7 is essential for centriole duplication and centrosomal accumulation of pericentriolar material proteins in interphase cells (2011) J. Cell Sci., 124, pp. 3760-3770Salem, H., Rachmin, I., Yissachar, N., Cohen, S., Amiel, A., Haffner, R., Lavi, L., Motro, B., NEK7 kinase targeting leads to early mortality, cytokinesis disturbance and polyploidy (2010) Oncogene, 29, pp. 4046-4057Kandli, M., Feige, E., Chen, A., Kilfin, G., Motro, B., Isolation and characterization of two evolutionarily conserved murin kinases (NEK6 and NEK7) related to the fungal mitotic regulator, NIMA (2000) Genomics, 68, pp. 187-196Richards, M.W., O'Regan, L., Mas-Droux, C., Blot, J.M., Cheung, J., Hoelder, S., Fry, A.M., Bayliss, R., An autoinhibitory tyrosine motif in the cell-cycle-regulated NEK7 kinase is released through binding of NEK9 (2009) Mol. Cell, 36, pp. 560-570Meirelles, G.V., Silva, J.C., Mendonça Yde, A., Ramos, C.H., Torriani, I.L., Kobarg, J., Human NEK6 is a monomeric mostly globular kinase with an unfolded short N-terminal domain (2011) BMC Struct. Biol., 11, p. 12Feige, E., Motro, B., The related murine kinases, NEK6 and NEK7, display distinct patterns of expression (2002) Mech. Dev., 110, pp. 219-223Minoguchi, S., Minoguchi, M., Yoshimura, A., Differential control of the NIMA related kinases, NEK6 and NEK7, by serum stimulation (2003) Biochem. Biophys. Res. Commun., 301, pp. 899-906Meirelles, G.V., Lanza, D.C.F., Silva, J.C., Bernachi, J.S., Leme, A.F.P., Kobarg, J., Characterization of NEK6 interactome reveals an important role for its short n-terminal domain and colocalization with proteins at the centrosome (2010) J. Proteome Res., 9, pp. 6298-6316Bartel, P.L., Fields, S., Analyzing protein-protein interactions using two-hybrid system (1995) Methods Enzymol., 254, pp. 241-263Devault, A., Martinez, A.M., Fesquet, D., Labbe, J.C., Morin, N., Tassano, J.P., Nigg, E.A., Doree, M., MNAT1 ("ménage à trois') a new RING finger protein subunit stabilizing ciclin H-cdk7 complexes in starfish and Xenopus CAK (1995) EMBO J., 14, pp. 5027-5036Whelan, S.A., He, J., Lu, M., Souda, P., Saxton, R.E., Faull, K.F., Whitelegge, J.P., Chang, H.R., Mass spectrometry (LC-MS/MS) identified proteomic biosignatures of breast cancer in proximal fluid (2012) J. Proteome Res., 11, pp. 5034-5045Carazzolle, M.F., De Carvalho, L.M., Slepicka, H.H., Vidal, R.O., Pereira, G.A., Kobarg, J., Meirelles, G.V., IIS - Integrated Interactome System: A Web-based platform for the annotation, analysis and visualization of protein-metabolite-gene-drug interactions by integrating a variety of data sources and tools (2014) PLoS One, 9, p. 100385Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Ideker, T., Cytoscape: A software environment for integrated models of biomolecular interaction networks (2003) Genome Res., 13, pp. 2498-2504Surpili, M.J., Delben, T.M., Kobarg, J., Identification of proteins that interact with the central coiled-Ccoil region of the human protein kinase NEK1 (2003) Biochemistry, 42, pp. 15369-15376Bartel, P., Chien, C., Sternglanz, R., Fields, S., (1993) Cellular Interactions in Development: A Practical Approach, pp. 153-179. , Hartley, D.A. Oxford University Press: OxfordPark, S., Lim, B.B., Perez-Terzic, C., Mer, G., Terzic, A., Interaction of asymmetric ABCC9-encoded nucleotide binding domains determines KATP channel SUR2A catalytic activity (2008) J. Proteome Res., 7, pp. 1721-1728Hegde, M.L., Hazra, T.K., Mitra, S., Functions of disordered regions in mammalian early base excision repair proteins (2010) Cell. Mol. Life Sci., 67, pp. 3573-3587Mittag, T., Kay, L.E., Forman-Kay, J.D., Protein dynamics and conformational disorder in molecular recognition (2010) J. Mol. Recognit., 23, pp. 105-116Doxsey, S.J., Stein, P., Evans, L., Calarco, P.D., Kirschner, M., Pericentrin highly conserved centrosome protein involved in microtubule organization (1994) Cell, 76, pp. 639-650Belham, C., Comb, M.J., Avruch, J., Identification of the NIMA family kinases NEK6/7 as regulators of the p70 ribosomal S6 kinase (2011) Curr. Biol., 11, pp. 1155-1167Rapley, J., Nicolàs, M., Groen, A., Regué, L., Bertran, M.T., Caelles, C., Avruch, J., Roig, J., The NIMA-family kinase NEK6 phosphorylates the kinesin Eg5 at a novel site necessary for mitotic spindle formation (2008) J. Cell Sci., 121, pp. 3912-3921Fourest-Lieuvin, A., Peris, L., Gache, V., Garcia-Saez, I., Juillan-Binard, C., Lantez, V., Job, D., Microtubule regulation in mitosis: Tubulin phosphorylation by the cyclin-dependent kinase Cdk1 (2006) Mol. Biol. Cell, 17, pp. 1041-1050Xu, W., Xi, B., Wu, J., An, H., Zhu, J., Abassi, Y., Feinstein, S.C., Xu, X., Natural product derivative bis(4-fluorobenzyl) trisulfide inhibits tumor growth by modification of beta-tubulin at Cys 12 and suppression of microtubule dynamics (2009) Mol. Cancer Ther., 8, pp. 3318-3330Meirelles, G.V., Perez, A.M., Souza, E.E., Basei, F.L., Papa, P.F., Hanchuk, T.D.M., Cardoso, V.B., Kobarg, J., "stop Ne(c)king around": How systems biology can help to characterize the functions of NEK family kinases from cell cycle regulation to DNA damage response (2014) World J. Biol. Chem., 5, pp. 141-160Ewing, R.M., Chu, P., Elisma, F., Li, H., Taylor, P., Climie, S., McBroom-Cerajewski, L., Figeys, D., Large-scale mapping of human protein-protein interactions by mass spectrometry (2007) Mol. Syst. Biol., 3, p. 8
    corecore