26 research outputs found

    The role of spatial heterogeneity in exchange processes of river ecosystems

    Get PDF

    Resistance and reconfiguration of natural flexible submerged vegetation in hydrodynamic river modelling

    Get PDF
    In-stream submerged macrophytes have a complex morphology and several species are not rigid, but are flexible and reconfigure along with the major flow direction to avoid potential damage at high stream velocities. However, in numerical hydrodynamic models, they are often simplified to rigid sticks. In this study hydraulic resistance of vegetation is represented by an adapted bottom friction coefficient and is calculated using an existing two layer formulation for which the input parameters were adjusted to account for (i) the temporary reconfiguration based on an empirical relationship between deflected vegetation height and upstream depth-averaged velocity, and (ii) the complex morphology of natural, flexible, submerged macrophytes. The main advantage of this approach is that it removes the need for calibration of the vegetation resistance coefficient. The calculated hydraulic roughness is an input of the hydrodynamic model Telemac 2D, this model simulates depth-averaged stream velocities in and around individual vegetation patches. Firstly, the model was successfully validated against observed data of a laboratory flume experiment with three macrophyte species at three discharges. Secondly, the effect of reconfiguration was tested by modelling an in situ field flume experiment with, and without, the inclusion of macrophyte reconfiguration. The inclusion of reconfiguration decreased the calculated hydraulic roughness which resulted in smaller spatial variations of simulated stream velocities, as compared to the model scenario without macrophyte reconfiguration. We discuss that including macrophyte reconfiguration in numerical models input, can have significant and extensive effects on the model results of hydrodynamic variables and associated ecological and geomorphological parameters

    Interaction between neighboring vegetation patches : impact on flow and deposition

    Get PDF
    Flow and sedimentation around patches of vegetation are important to landscape evolution, and a better understanding of these processes would facilitate more effective river restoration and wetlands engineering. In wetlands and channels, patches of vegetation are rarely isolated and neighboring patches influence one another during their development. In this experimental study, an adjacent pair of emergent vegetation patches were modeled by circular arrays of cylinders with their centers aligned in a direction that was perpendicular to the flow direction. The flow and deposition patterns behind the pair of patches were measured for two stem densities and for different patch separations (gap widths). The wake pattern immediately behind each individual patch was similar to that observed behind an isolated patch, with a velocity minimum directly behind each patch that produced a well-defined region of enhanced deposition in line with the patch. For all gap widths (Δ), the velocity on the centerline between the patches (Uc) was elevated to a peak velocity Umax that persisted over a distance Lj. Although Umax was not a function of Δ, Lj decreased with decreasing Δ. Beyond Lj, the wakes merged and Uc decayed to a local minimum. The merging of wakes and associated velocity minimum produced a local maximum in deposition downstream from and on the centerline between the patches. If this secondary region of enhanced deposition promotes new vegetation growth, the increased drag on the centerline could slow velocity between the upstream patch pair, leading to conditions favorable to their merger

    Flow measurements around a submerged macrophyte patch in an in-situ flume setup

    Get PDF
    In most aquatic ecosystems, hydrodynamic conditions are a key abiotic factor determining species distribution and aquatic plant abundance. Recently, local differences in hydrodynamic conditions have been shown to be an explanatory mechanism for the patchy pattern of Callitriche platycarpa Kütz. vegetation in lowland rivers. Those patches are often subject to strong hydrodynamic forces as they act as a resistance against the current. A plant‟s ability to tolerate water movement without suffering mechanical damage often relies on minimizing the hydrodynamic forces by avoiding stress. In this paper, we have quantified the behaviour and influence of a C. platycarpa patch in an in situ flume, manipulating the incoming discharge on a single patch. The knowledge obtained helps to understand the plant-flow-sediment interactions that form the basis of the explanatory mechanism for the patchy vegetation pattern

    What is a Macrophyte Patch? Patch Identification in Aquatic Ecosystems and Guidelines for Consistent Delineation

    Get PDF
    Schoelynck J, Creëlle S, Buis K, De Mulder T, Emsens W, Hein T, Meire D, Meire P, Okruszko T, Preiner S, Roldan Gonzalez R, Silinski A, Temmerman S, Troch P, Van Oyen T, Verschoren V, Visser F, Wang C, Wolters J, Folkard A, in press. . Ecohydrology & Hydrobiology. DOI 10.1016/j.ecohyd.2017.10.00
    corecore